
18-548/15-548 Multiprocessor Consistency & Coherence

1

19 Multiprocessor
Consistency and

Coherence
18-548/15-548 Memory System Architecture

Philip Koopman
November 18, 1998(Based on a lecture by LeMonté Green)

Required Reading: [Cragon]: Chapter 4
Recommended Reading:

[H&P]: Chapter 8
[Adve 96]: “Shared Memory Consistency Models: A Tutorial”
[Lenoski 90]: “The Directory-Based Cache Coherence

 Protocol for the DASH Multiprocessor”
[Schimmel]: pp. 59-68, 83-87, 99-104, Chapter 15

Assignments
u By next class read about Fault Tolerance:

• Cragon pp. 278-283
• Siewiorek & Swarz handouts

• Supplemental reading:
– Hennessy & Patterson 6.5
– Koopman & Siewiorek 5.7
– IBM Tech. Note: Fault Tolerance and DRAMS

u Homework 11 due Monday, November 30

u Test #3 Wednesday December 2
• In-class review Monday November 30
• More like test #2 than test #1 (i.e., system-level, multi-concept problems)

18-548/15-548 Multiprocessor Consistency & Coherence

2

Preview
u Virtual Caches

• Design issues and solutions of virtual caches

u Multiprocessor Consistency
• When does a memory write show up at another CPU?
• A programming model

u Multiprocessor Coherence
• How are memory accesses coordinated among CPUs?
• A mechanism

u Performance & Software
• Shared resources and spin locks
• Cache aligning data structures

VIRTUAL CACHES

18-548/15-548 Multiprocessor Consistency & Coherence

3

Refresher: Limit to Physical Caches
u Remember the physically addressed cache?

• Number of untranslated address bits limited cache size
• TLB in critical path for determining hit/miss, but could be done concurrently

4 KB
CACHE

TLB

32-BIT
VIRTUAL

ADDRESS {

BLOCK
SELECT

12 LOW BITS

20 HIGH BITS

DATA

"PHYSICALLY
ADDRESSED"

CACHE

18-BIT TAGS

18 BIT PAGE FRAME ADDRESS

VIRTUAL
PAGE
NAME

HIT IF MATCH
PHYSICAL

PAGE
NAME

Virtual Cache -- Unconstrained L1 Size
u L1 cache addressed with virtual address alone
u TLB operates to convert to physical addresses for L2 cache and beyond

• L1 cache size is not constrained -- good idea for L1 I-cache especially
• Address translation only required on L1 cache miss

VIRTUAL ADDRESS

PHYSICAL
ADDRESS

LOW BITS
HIGH BITS

TAG

HIT?

TLB L1 CACHE

L2 CACHE

18-548/15-548 Multiprocessor Consistency & Coherence

4

Problems Solutions

u OS flushes caches
• On context switch
• On “unsafe” operations
• But, creates a cold cache

u Include process ID with tags
• Solves all but intra-process

problems

u Check physical address after
the fact
• Take an exception if there’s a

problem

u Ambiguity
• One virtual address refers to 2

different physical locations
• How?

– memory manager performs
remapping

– context switching

u Alias
• More than one virtual address is

used to refer to the same
physical memory location

• How?
– context switching
– 2 processes using different

addresses to refer to same
shared memory location

MULTIPROCESSOR CACHE
CONSISTENCY &

COHERENCE

18-548/15-548 Multiprocessor Consistency & Coherence

5

Multiple Processors
u Simple Multiprocessor has multiple CPUs on a single bus

• Global memory address space with multiple threads working on a single
problem

• Caches used not only to improve latency, but also filter bus traffic
u Problems:

• Consistency -- when does another CPU see a memory update?
• Coherence -- how do other CPUs see a memory update?

CPU 2 CPU 3 CPU 4

CACHE 1 CACHE 2 CACHE 3 CACHE 4

MAIN
MEMORY

CPU 1

Consistency
u Consistency addresses WHEN a processor sees an update to memory

• If two processors touch a memory location, what happens?

u Depending on the consistency model, both of the below sequences might
execute the conditional statement for zero variable value
• The outcome depends on consistency model
• There is no single “correct” behavior for all machines

CPU 1 Executes:

P1: A = 0;

.....

A = 1;

L1: if (B == 0)

CPU 2 Executes:

P2: B = 0;

.....

B = 1;

L2: if (A == 0)

18-548/15-548 Multiprocessor Consistency & Coherence

6

Consistency Models
u Why not use a strong consistency model?

• How are concurrent loads and stores ordered by memory accesses by
multiple CPUs

– Simplest conceptual model is it looks like a multi-tasking single CPU
– Attempting strong (uniprocessor-like) consistency can cause a global

bottleneck -- costs performance

u “Weak” consistency models are used to improve performance
• Permits out-of-order execution within individual CPUs
• Relaxes latency issues with near-simultaneous accesses by different CPUs
• Programmer MUST take into account the memory consistency model to

create correct software

Sequential Consistency (Strong Ordering)
u Requirements:

• All memory operations appear to execute one at a time
• All memory operations from a single CPU appear to execute in-order
• All memory operations from different processors are “cleanly” interleaved with

each other (serialization)
– Delay all memory accesses until invalidates are done.

u Sequential consistency forces all reads and writes to shared data to be
atomic

• Once begun, the memory operation can’t be interrupted or interfered with
• Resource is locked and unusable until operation is completed

18-548/15-548 Multiprocessor Consistency & Coherence

7

Spin Locks Under Sequential Consistency
u Sequential consistency is not a silver bullet… … .

behavior STILL nondeterministic
• Data races still can occur due to relative timing of the CPUs
• Similar situation to single CPU with multiple threads
• Solution: lock critical resources (shared data). Common to use spin locks of

atomic read-modify-write operations (test and set).

int test_and_set(volatile int *addr)
{ /* sets address to 1, returns previous value */
 int old_value;
 old_value = swap_atomic(addr, 1);
 return(old_value);
}

void lock(volatile int *lock_status)
{ /* wait until lock is captured */
 while (test_and_set(lock_status) == 1);
}

Sequential Consistency Problems
u Can’t use important hardware optimizations

• Problem with anything that interferes with strict execution order
– Write buffers, Write assembly caches, Non-blocking caches…

• Not a problem with uniprocessors

u May not be able to use important software optimizations
• If you want to be really strict about it, source code must execute as-is, so no:

– Code motion, register allocation, eliminating common subexpressions…
• Same problem exists with uniprocessor concurrency

u Relaxed memory consistency models:
• Permit performance optimizations
• BUT, require programmer to take responsibility for concurrency issues

18-548/15-548 Multiprocessor Consistency & Coherence

8

Total Store Ordering
u Relaxed Consistency

• Stores must complete in-order
• But, stores need not complete before a read to a given location takes place

u Allows reads to bypass pending writes.
• Store buffers allowed!
• But, writes MUST exit the store buffer in FIFO order.

u Problem: Other CPUs don’t check the store buffer for data.
• So, a read from CPU #2 might not see that data has “already” been changed

by CPU #1
• Synchronization of some sort required before reading potentially shared data

Partial Store Ordering
u Even more relaxed consistency

• Stores to any given memory location complete in-order
• But, stores to different locations may complete out of order
• And, stores need not complete before a read to a given location takes place
• Like total store ordering, but ordering concept applied only on a per-location

basis

u Additional Problem: Spin locks may not work
• Modifying a shared variable involves:

– Writing to the variable’s memory location
– Changing the spin lock value to “available”
– But, what if the spin lock write completes before the variable write?

• Solution: hardware must support some sort of barrier synchronization
– All CPUs wait at barrier until global memory state is synchronized
– Release spin lock only after barrier synch.

18-548/15-548 Multiprocessor Consistency & Coherence

9

Weak Consistency
u Really relaxed consistency

• Anything goes, except at barrier synchronization points
• Global memory state must be completely settled at each synchronization
• Memory state may correspond to any ordering of reads and writes between

synchronization points

u Permits fastest execution
• But, managing concurrency is entirely the programmer’s responsibility

MULTIPROCESSOR
CACHE COHERENCE

18-548/15-548 Multiprocessor Consistency & Coherence

10

Cache Coherence
u Coherence is the hardware protocol that ensures updates to memory

locations are propagated
• Every write much eventually be accessible via a read (unless over-written first)
• All reads/writes must support desired consistency model

u Coherence issue for uniprocessors
• DMA changes memory while bypassing cache

u Coherence for multiprocessors
• One CPU may change memory location already cached by another CPU

– Intentional changes to shared data structures
– Accidental changes to variables inhabiting the same cache block

• Shared variables may be used for intentional communication
– So, coherence protocol performance may matter a lot

Snooping vs. Directory-Based Coherence
u Snooping Solution (Snoopy Bus):

• (Solution useful for smaller systems, including uniprocessor DMA problem)
• Send all requests for data to all processors

– Processors snoop to see if they have a copy and respond accordingly
– Requires broadcast, since caching information is at processors

• Works well with bus (natural broadcast medium)
– But, scaling limited by cache miss & write traffic saturating the bus

• Dominates for small scale machines (most of the market)

u Directory-Based Schemes
• (Scalable Multiprocessor solution)
• Keep track of what is being shared in a directory
• Distributed memory => distributed directory (avoids bottlenecks)
• Send point-to-point requests to processors

18-548/15-548 Multiprocessor Consistency & Coherence

11

Basic Snoopy Protocols
u Write Invalidate Protocol:

• Multiple readers, single writer
• Write to shared data:

– An invalidate is sent to all caches which snoop and invalidate any copies

• Read Miss:
– Write-through: memory is always up-to-date
– Write-back: force other caches to update copy in main memory, then snoop that value

• Can use a separate invalidate bus for write traffic

u Write Broadcast Protocol:
• Write to shared data: broadcast on bus, processors snoop, and update copies
• Read miss: memory is always up-to-date
• Higher bandwidth (transmit data + address), but lower latency for readers

– From a bandwidth point of view, looks like write-through cache

An Example Snoopy Protocol
u Invalidation protocol, write-back cache
u Each block of memory is in one state:

• Clean in some subset caches and up-to-date in memory
• OR Dirty in exactly one cache
• OR Not in any caches

u Each cache block is in one state:
• Shared: block can be read
• OR Exclusive: cache has only copy, its writeable, and dirty
• OR Invalid: block contains no data

u Read misses: cause all caches to snoop
u Writes to clean line are treated as misses

18-548/15-548 Multiprocessor Consistency & Coherence

12

Snoopy Protocol Example

 Exclusive
(read/write)

CPU write hit
CPU read hit

Write miss
for block

CPU write

P
la

ce
 w

ri
te

 m
is

s
on

 b
us

Read
 miss

 for
 blo

ck

CPU
 rea

d m
iss

Writ
e-b

ac
k b

loc
k

Pla
ce

 write
 m

iss
 on

 bu
s

CPU
 write

Place read miss on bus

Place read
miss on bus

CPU read

CPU read hit

CPU write miss

Write-back data
Place write miss on bus

CPU
read
miss

Invalid

Write miss for this block

Write
-ba

ck
 da

ta;
 pl

ac
e r

ea
d m

iss
 on

 bu
s

Shared
(read only)

W
ri

te
-b

ac
k

bl
oc

k

Triggered by Bus Activity
Triggered by CPU Activity

H&P Figure 8.12
(with typographic bugs fixed)

Snoopy Protocol Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

18-548/15-548 Multiprocessor Consistency & Coherence

13

Snoopy Protocol Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

Snoopy Protocol Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

18-548/15-548 Multiprocessor Consistency & Coherence

14

Snoopy Protocol Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes A1 and A2 map to same cache block

Snoopy Protocol Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes A1 and A2 map to same cache block

18-548/15-548 Multiprocessor Consistency & Coherence

15

Snoopy Protocol Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

Assumes A1 and A2 map to same cache block

MULTIPROCESSOR
MEMORY MODELS

18-548/15-548 Multiprocessor Consistency & Coherence

16

Multiprocessors -- UMA
u UMA - Uniform Memory Access

• Several CPUs interconnect with shared memory/common bus
• Caches used to filter bus traffic
• Works well up to 8-16 nodes (e.g., Encore Multimax)

CPU 2 CPU 3 CPU 4

CACHE 1 CACHE 2 CACHE 3 CACHE 4

MAIN
MEMORY

CPU 1

Multiprocessors -- NUMA
u CC-NUMA - Cache Coherent Non-Uniform Memory Access

• Numerous clusters with interconnect; global address space
• Scales to many CPUs (as long as application has locality)
• Becomes a “multicomputer” if each cluster has a separate address space instead

of global memory addressing

MEMORY

DIRECTORYI/O

CPU +
CACHE

CPU +
CACHE

CPU +
CACHE

CPU +
CACHE

MEMORY

DIRECTORYI/O

MEMORY

DIRECTORYI/O

MEMORY

DIRECTORYI/O

18-548/15-548 Multiprocessor Consistency & Coherence

17

Do Caches Work In Multiprocessors?
u Basic cache functions are still a “win”:

• Caches reduce average memory access time as long as there is locality
– Memory can “self-organize” by migrating pages to cluster where data is being used

• Caches filter memory requests
– Significantly reduce bus traffic on single-bus model

u But, there are new challenges:
• Software must account for consistency model on any multiprocessor

– Tradeoff of software complexity vs. performance with relaxed consistency model

• A new cache “C” is revealed -- Coherence misses
– Two processes on two CPUs could cause data to migrate back and forth, causing

cache misses because the data is being used frequently (rather than because it is
used infrequently)

REVIEW

18-548/15-548 Multiprocessor Consistency & Coherence

18

Review
u Virtual Caches

• TLB access not required for L1 cache; relaxes address limit for L1
• But, introduces potential problems with coherence

u Multiprocessor Consistency
• Sequential consistency
• Total Store Ordering
• Partial Store Ordering

u Multiprocessor Coherence
• Snooping vs. directory
• Snoopy Cache protocol example

u UMA/NUMA

