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8
Data Management

Policies
18-548/15-548  Memory System Architecture

Philip Koopman
September 21, 1998

Required Reading:  Cragon 2.2.4-2.2.6, 3.5.2

Supplemental Reading: VanderWiel paper, July 1997 Computer, pp. 23-30
Przybylski paper, 1990 ISCA, pp. 160-169

Assignments
u By Wednesday September 30 read about memory operation & sizing:

• Understanding SRAM operation (IBM App. Note)
• What’s all this Flash stuff? (National Semiconductor)

u Homework 4 due September 23

u Lab 2 due September 25

u Test 1 on September 28
• In-class review September 23 -- look at example tests before class
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Where Are We Now?
u Where we’ve been:

• Data organization
• Associativity

u Where we’re going today:
• Policies -- how to manage the data
• Policies apply to all levels of memory hierarchy

u Where we’re going next:
• Memory operation & cache chip area
• Multi-level caches to improve performance

Preview
u Data fetching policies

• When do you fetch and how much?
• Blocking vs. non-blocking caches

u Data replacement strategies
• How do you select a victim for replacement?

– LRU
– Random

u Data storing policies
• When do you store, and how much?

– Write Allocation
– Write-through & Write-back

• Write buffering
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FETCH POLICIES

Fetch Policies
u Order of moving words from main memory to cache

• Which word gets fetched first?
u When can CPU resume processing after cache miss?

• Non-blocking cache

u Conditions that trigger a fetch from main memory to cache
• Fetch on miss (demand fetch for read; block fill for write)
• Software prefetching  (compiler/programmer give hints to HW)
• Hardware prefetching (hardware speculatively fetches)

– Special case is instruction prefetching:  sequential, branch targets
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Cache Fetching: Load Policies
u Block load: always start from

beginning of block
u Load Forward: load only

remainder of sector
• Must load at least all data covered

by a single Valid bit => 1 block or
more

u Fetch Bypass:  start from needed
word, then fill rest of block
• Called “critical word first” in H&P
• Also known as “wrap around”

(Cragon Figure 2.14)

Cache Fetching: Resumption of Processing
u Simple fetch: wait until

entire cache block is
present

u Forward (early restart):
restart as soon as word
is available
• Needed to benefit from

wrap-around load policy
• Risk of cache miss to

word already requested
for load into cache
(complicates control
logic) a bit

(After Cragon Figure 2.12)
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Non-Blocking Caches
u Non-Blocking means CPU doesn’t stall on cache miss or write

completion
• “Blocking” caches stall CPU until access is completed

u Non-Blocking speeds operation
• Out-of-order execution unit can issue multiple reads
• Once write is issued, can proceed without waiting for write to complete

u Adds complexity
• Check if reads refer to data not yet written
• Ensure proper ordering of reads that map into same cache block (might return

out of order in some memory subsystems)
u Control ties in with data dependency control (e.g., “scoreboard”) --

beyond scope of this course

Non-Blocking Cache Benefits

(After Hennessy & Patterson Figure 5.22)
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Hardware Prefetching
u Instruction prefetching  [Smith 1982]; “useful for 32- to 64-byte

blocks”
• Always prefetch: prefetch word after current word
• Tagged prefetch: prefetch next block if current block was a cache miss
• Prefetch on misses: have blocks > 1 word; prefetch entire block

u Instruction queues trigger prefetching
• Queue refill for in-line instructions
• Branch target queue speculatively fetches branch targets

u Data prefetching
• IBM S/360/91 speculatively fetches data before instruction released to

execution unit
• Vector address generators (discussed later)
• Data prefetching is difficult

– Need to know effective address, which may be computed
– Need way to inhibit for memory-mapped I/O   (e.g., C “volatile” keyword)

Software Prefetching
u Software-initiated, non-blocking load of cache block in anticipation of

need
• Doesn’t halt execution
• BUT, does consume bandwidth

– Might cause stall if another cache miss occurs when this load is being processed
– Want to put in otherwise unused instruction issue slots
– [Callahan 91]:  ~33% of data prefetches turn out to have be useful

u Example: Power PC 601
• Data Cache Block Touch -- loads block into cache

u DEC Alpha:
• “use prefetching only when transport times ~ 100 clocks”
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Patterned Prefetching
u Obvious prefetching is to exploit sequentiality

• In-order prefetching and large block sizes “look” similar
• Branch prediction prefetches are “logical” in-order instead of physical in-order

u But, can also do patterned prefetches
• Fetch every ith element when accessing a matrix.
• Use software hints to generate prefetch instructions via compiler

u Alternate implementation: large register file
• For out-of-order execution, simply load value into a register well before it is

needed
• BUT, might generate page faults, whereas machine support can ignore prefetch

if not readily accessible

REPLACEMENT POLICIES
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Replacement Policy
u Replacement needed for capacity and conflict misses

• Read miss
• Write miss with write-allocate
• Goal: minimize number of conflict misses

u Direct-mapped cache -- only one possible block to replace
u Set associative & associative caches -- select a victim

• Least Recently Used  (LRU)
– Typically best

• Random  (typically pseudorandom)
– Easier to build, ~12% performance penalty compared to LRU

• First In First Out  (FIFO)
– Probably no better than random

LRU Replacement
u Least Recently Used

• Requires status bits to track LRU element per set
• 2-way set associative: keep flag with most recently accessed sector; replace the

other one
• m-way set associative:

– m counters of size log2 m
» Can infer state of one counter from all other counter values; might not be worth trouble

– Initialization:
» Initialize all counters to different values and mark contents “invalid” on system reset

– Allocate new sector:
» allocate sector with counter value of 0
» proceed to access sector below

– Access any sector:
» decrement all counters with values higher than accessed sector
» set accessed sector counter to all 1
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LRU Example...

Intel Pentium Pseudo-LRU
u 4-way set associative; but

only a single 3 bit LRU
value
• True LRU would require

3 @ 2-bit counters and
more complicated logic

• B0, B1, B2 track LRU
within set partitions

(Intel Pentium manual)
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Random Replacement
u Simulations indicate almost as good as LRU

• Less hardware to implement
• i860 used random replacement

u Obvious way to implement is with Linear Feedback Shift Register
(LFSR)

LRU Can Be Brittle...
u LRU is usually the best with “normal” data

• Works well when temporal locality is smaller than cache size
u BUT, LRU is brittle in degenerate cases

• Example case: array size A with cache size C, iteratively read array
– For cache size C ³  A, LRU results in 0% conflict misses, 0% capacity misses

• Fully associative is brittle
– For A = C+1, gets 100% miss rate  (each element removed just as it is about to be

needed)

• Set associative is not quite as bad
– For A = C+k  the first k sets of cache get 100% miss rate
– Degrades to 100% overall miss rate with k = C / #sets

• Direct mapped is best
– Degrades smoothly to 100% overall miss rate with A = 2 * C
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... While Random Can Be Robust
u Sometimes brittleness is bad

• Especially when customers get “unreasonable” surprises
• For example, increasing the data set of a program to need just one more TLB

entry when the TLB is fully associative with LRU replacement...

u Random, on the other hand, gives smooth behavior in more cases
• More than 0% miss rate even in best case  (“false” conflict misses)
• But, not 100% miss rate even when data set larger than cache size

u Random is also suboptimal in the “everyday” case by a few percent

Random Replacement Smooths Response

• If cache weren’t empty when program started, could have greater than 0% miss
rate even for cache size > array size

EFFECTS OF LRU or RANDOM REPLACEMENT
ON ARRAY-SCANNING CODE
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Degenerate Case For LRU Replacement
u Happens when touching a number of elements > cache size before

returning to first element
u Three regions of behavior (example -- program that iterates scanning

an array):
• 100% cache misses

– cache size <  array size - (array size/associativity)

• Linearly decreasing cache misses
– cache size within (array size/associativity) of array size

• 100% cache hits
– cache size > array size

Concept in Real Life:
u Name a real-life situation where LRU replacement of an item is

preferred

u Name a real-life situation where random replacement is practiced
because of the overhead cost of tracking LRU information isn’t worth
the effort
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WRITE POLICIES

Write Policies
u Write data destination: is value written to memory or just cache?

• Write through -- always written
• Write back (a.k.a. copy-back) -- written only when cache block evicted
• Write once

– First write as write through; subsequent as write back
– Good hack for multiprocessors

u Write miss: allocate block if it’s a miss?
• Write-allocate -- pick a victim and evict it on write miss
• No-write-allocate -- don’t disturb cache on write miss
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Write Through
u When writing, send value to next level down in memory hierarchy

• Typically a write buffer is used as a staging area
u Advantages

• Simpler to implement, especially on multi-processor
• Makes sense if data is seldom re-written

u Disadvantages
• Potentially increased memory traffic (if words are rewritten multiple times)
• Potential coherence problem if write buffer is used (must check write buffer as

well as caches)

Write Back
u When writing to cache, don’t write to memory

• Set Dirty bit indicating modified value present
• Only the last write to a memory location is recorded, when data is “evicted”

from cache
u Advantages

• Reduces bus traffic for high-touch variables
u Disadvantages

• Requires space for dirty bits in cache
• Must be careful to track coherency of evicted value until it reaches memory
• Increases latency for evicting dirty blocks (may be a net loss if data is seldom

rewritten)
– Cache miss must include time to remove block before writing new data
– Read miss latency may not be increased -- overlap eviction with fetching new data
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Write-Allocate
u Treats write miss similarly to read miss -- allocates cache sector

containing written value
• Can be used with either write through or write back; usually used with write

back
u Advantages

• Works well for programs that do a lot of write/read (as opposed to read/write)
– Stacks/activation records
– Garbage-collected heaps

• When used with write back can attenuate multiprocessor bus traffic
u Disadvantages

• Must fetch non-written data to complete block  (thus, works best if there is one
word per block)

• If large blocks are used, can increase bus traffic to fill unwritten block
fragments

• Can pollute cache with “dead” values that won’t be re-read before eviction

No-Write-Allocate
u On write miss, value is not cached

• Typically used with write-through policy
• Non allocation implies that all write misses use write-through

u Advantages
• Simpler design
• In programs with long latency between write and subsequent read, doesn’t

pollute cache with long-term-storage items
u Disadvantages

• Can really hurt performance if write/read behavior is occurring
– (Software hack: dummy read before writing to simulate write allocation)
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DTMR Write Policy Data
(Flynn Figure 5.18)

WRITE BUFFERING
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Write Buffer
u With write-through cache: reduces stalls on consecutive writes

• Smooths bursts of bus accesses for back-to-back writes
– Useful for saving multiple registers for procedure call, interrupt, etc.
– Non-blocking implementation must check contents against data dependencies

• 80486 has 4-level write buffer;
[CRAW90] shows average
occupancy of 3

u With write back cache: holds block
during multi-cycle write to memory
• Allows cache to be used while waiting

for write when block size > transfer
size to next level of memory hierarchy

• IBM RS/6000 writes 128-byte block
in 8 clock cycles

u “Main Memory” could instead
be L2 cache

Write Assembly Cache
u Expansion of write buffer idea (write buffer with extra circuitry)

• Holds writes to a physical memory word, waiting for another write to that same
word

• Captures spatial locality of writes
– Stores to structs
– Stores to arrays
– Register pushes for subroutine calls

• Captures temporal locality of writes (e.g., statically allocated scratch variable)
• Primarily effective when write is uncached

– Write no allocate
– Write through

u Examples
• VAX 8800 -- single-line WAC
• NCR -- multi-line WAC’s in workstations
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Write Assembly Cache Effectiveness
• WAC block size of 4/8 bytes;  Transfer size of 4/8 bytes;  4-way set

associativity
(Flynn Figure 5.40)

Write Priority to Reduce Miss Penalty
u Simple approach is to stall if write buffer non-empty on miss

• Guarantees read miss will access correct data
• Increases miss penalty (1.5x for 4-word buffer on MIPS M/1000)

u Better approach is give reads priority over writes
• On write through, write buffer waits until free bus cycles are available, giving

reads priority
• On write back, reading to fill cache block takes priority over eviction
• Requires control logic to ensure any read miss correctly reflects contents of

write buffer



18-548/15-548  Data Management Policies            9/21/98

19

Customized Policies
u Customizable operating mode depending on expected workload

• Can be general mode bit
• Can be specific for a particular instruction

u MC68040 example
• Noncacheable mode: forces data out of cache

– Shared variables in absence of multiprocessor coherency
• Cacheable, write-through/write-no-allocate

– If compiler “knows” variable won’t be accessed for a long time
– Especially useful for scientific code where arrays > cache size

• Cacheable, write back/allocate
– If compiler “knows” variable will be accessed again soon

• Special access -- freezes cache
– Read/write misses do not allocate
– Useful for deterministic execution times

POLICIES &
ORGANIZATION
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Fetch Policies
u Prefetch interacts with block & sector size

• Can use prefetch to fill entire sector instead of just one block
– Reduces memory traffic on writes -- only a block is written, not entire sector

• On unsectored caches prefetch can give sector-prefetch effects
– But, still pay area penalty for one tag per block

Replacement Policy
u LRU replacement can become brittle with highly associative caches

• Saw this in homework #3 with TLB sizing on some machines
• Can be an issue with any computer that manipulates large data arrays -- may

want to use random replacement instead
u LRU replacement uses chip area and time

• Intel uses psuedo-LRU to save space & speed up operation
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Write Policies
u Write through may be effective for large block sizes

• Avoids having to write back large block if only one word has changed
u Write-no-allocate may be effective for large block sizes

• Avoids having to read in other words to fill block

u BUT, can avoid both these problems with sectored cache
• Write back conserves bandwidth, especially important on multi-processors
• Write allocate conserves bandwidth for areas having write/read behavior,

generally improves effectiveness of write back cache

u Write assembly buffer can help if write-through policy is used
• Simulates a single-set write back cache
• Want WAB size to have a “block size” appropriate for spatial write locality in

workload.

REVIEW
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Review
u Fetch policies determine how and when to fetch data

• Prefetching to improve hit rate; but at cost of bandwidth
• Non-blocking caches help decouple memory and processing strategies

– Required for effective out-of-order execution of memory accesses

u Replacement policies select which block to allocate/evict
• LRU -- complicated but (usually) best
• Random -- easier, less brittle in degenerate cases

u Write policies determine when data is written to memory
• Write through is simpler, but often higher bandwidth than write back
• Write-allocate helps with write-before-read locations
• Write buffering can decouple CPU from memory access

Key Concepts
u Latency & Concurrency

• Prefetch can reduce latency with speculative operations
• Non-blocking caches reduces latency for concurrent memory accesses

u Bandwidth
• Write through vs. write back is a bandwidth tradeoff that depends on program

characteristics
u Replication

• Multiple blocks per sector can decouple desire for prefetch from cost of tags
and cost of writing unmodified data

u Balance
• Miss rate vs. traffic ratio is a classic balance issue

– Write through vs. write back
– Block size, sector size, and prefetch strategy


