
18-548/15-548 Cache Data Organization 9/14/98

1

6
Cache Data

Organization
18-548/15-548 Memory System Architecture

Philip Koopman
September 14, 1998

Required Reading: Cragon 2.2.7, 2.3-2.5.2, 3.5.8
Supplemental Reading: Hennessy & Patterson 5.3, 5.4

Assignments
u By next class read about associativity:

• Cragon pg. 166-174

u Homework 3 due Wednesday September 16

u Lab 2 due Friday September 23

18-548/15-548 Cache Data Organization 9/14/98

2

Where Are We Now?
u Where we’ve been:

• Physical memory hierarchy -- size vs. speed
• Virtual memory hierarchy -- mapping

u Where we’re going today:
• Details of data organization

– Split vs. Unified caches
– Block size tradeoffs

u Where we’re going next time:
• Associativity
• Data management policies

Why Not Use a Huge Cache? (Revisited)
u L1 is generally implemented as on-chip cache

• Going off-chip takes longer than staying on-chip
• Slows down with address fanout, chip select, data bus drive for off-chip

u Area
• On-chip cache must share chip with CPU; limits size to an extent

u Address translation
• Bits available to address cache usually limited to those not mapped by virtual

memory
u Compulsory misses may dominate anyway

• Caches bigger than program+data size (working set) don’t help
• Transaction processing has small working sets with short lives

18-548/15-548 Cache Data Organization 9/14/98

3

How Do You Make the Most of Cache?
u Keep cache arrays small & simple

• Faster clock cycle
• Reduced area consumption

u Make the best use of a limited resource (next few lectures)
• Arrange data efficiently

– Split vs. unified caches
– Block and sector size vs. overhead for tags and flag bits

• Minimize miss rate while keeping cycle time & area usage low
– Use associativity in just the right amount

• Use good management policies

Preview
u Design Target Miss Rates

• A conservative starting point for designs
u Split vs. Unified Caches

• I-cache
• D-cache
• Unified Cache

u Sectors & Blocks
• Bigger is better...

Except when bigger is worse

18-548/15-548 Cache Data Organization 9/14/98

4

DESIGN TARGET
MISS RATES

(DTMR)

DTMR Overview
u 1985 ISCA paper by Smith, updated by Flynn in his book

• Conservative estimate of expectations
u Idea is baseline performance data to estimate effects of changes in

baseline cache structure
• Unified cache
• Demand fetch
• Write-back
• LRU replacement
• Fully associative for large blocks; 4-way set associative for 4-8 byte blocks

u The numbers are, in some sense, a convenient fiction
• Cache performance depends on workload and detailed machine characteristics
• But, DTMR is useful to develop intuition

18-548/15-548 Cache Data Organization 9/14/98

5

DTMR Benchmark Mix (based on Smith, 1985)

u 49 traces
• Variety of applications
• Includes Operating System effects

u 6 machine architectures
• IBM S/370, IBM S/360, Vax, M68000, Z8000, CDC 6400

u 7 languages
• Fortran, 370 Assembler, APL, C, LISP, AlgolW, Cobol

u Suggested use for DTMR:
• Provides a conservative baseline for estimating good cache parameters

– Paper concludes “caches always work”, and are worthwhile to use

• Gives a starting point for detailed simulations

u Data tables are in Appendix A of Flynn
• Also gives adjustment multipliers for various parameters

Effect of Application Environments
u Fully associative, 16-byte blocks (Flynn Fig. 5.11)

18-548/15-548 Cache Data Organization 9/14/98

6

Effect of Machine
(Flynn Fig. 5.12)

DTMR Compared to SPECMARK

(Flynn Figure B.1)

18-548/15-548 Cache Data Organization 9/14/98

7

Diminishing Returns
u Even for “well behaved” programs you get diminishing returns by

increasing cache size
• baseline DTMR data for 8x cache size increases:

– 20% miss ratio with 1 KB cache
– 7.5% miss ratio with 8 KB cache -- 2.7x improvement for 8x size increase
– 3% miss ratio with 64 KB cache -- 2.5x improvement for 8x size increase
– 1.5% miss ratio with 512 KB cache -- 2.0x improvement for 8x size increase+

• And, of course, larger memory arrays will cycle more slowly...

u Prediction:
• Eventually cache memory will run out of steam, and we’ll need some other

technology to bridge the main-memory/CPU speed gap
• But, that’s a problem for another course...

INSTRUCTION CACHE

18-548/15-548 Cache Data Organization 9/14/98

8

Making the Most of Limited Cache

u Optimize for the Common Case: (Cragon Table 1.1)

• Instructions ~71%
• Data Read ~22%
• Data Write ~7%

» (But, don’t forget Amdahl’s Law -- data ends up being important too!)

SPARC
Integer

SPARC
Floating
Point

MIPS
Integer

MIPS
Floating
Point

IBM
S/360

VAX Average

Instruction .79 .80 .76 .77 .50 .65 .71
Data Read .15 .17 .15 .19 .35 .28 .22
Data Write .06 .03 .09 .04 .15 .07 .07

Exploiting Instruction Locality
u Instruction buffers: for look-behind

u Instruction queues: prefetching

u Instruction caches: look-ahead & look-behind

18-548/15-548 Cache Data Organization 9/14/98

9

Instruction Buffer (Loop Cache)
u Retains last n instructions executed in FIFO queue
u Short backward branches freeze queue and execute from it
u Useful for cache-less processors running scientific code

• CDC 6600 had 8 60-bit registers
in the instruction queue

– Up to:
sixteen 30-bit instructions;
thirty-two 15-bit instructions;
combinations

• Cray 1 buffered 256 16-bit instructions

Instruction Queues (prefetch)
u Can provide small but effective I-cache

mechanism
• Prefetches sequential instructions in

advance
• Can keep instructions flowing (to a

degree) even if bus (or single-ported
unified cache) is being used for data

• Can trigger I-cache prefetching
automatically

IN-LINE EXECUTION

MEMORY
PREFETCH

EXECUTION
UNIT

INSTR 7
INSTR 6
INSTR 5
INSTR 4
INSTR 3
INSTR 2
INSTR 1
INSTR 0

{

18-548/15-548 Cache Data Organization 9/14/98

10

Instruction Queues in Superscalar CPUs
u Aids in decoding variable-length & multiple instruction issue

• Instruction decode is relative to head of queue
– Cache & VM misses decoupled from instruction decoding

• Can smooth memory bandwidth demands (to a degree), even if large
instructions are issued quickly

• Pentium prefetches both in-line and one branch-target stream

IN-LINE EXECUTION

MEMORY
PREFETCH

SUPERSCALAR
EXECUTION
UNIT

{
{

INSTR 7
INSTR 6
INSTR 5
INSTR 4
INSTR 3
INSTR 2
INSTR 1
INSTR 0

Trace Cache
u Capture paths (traces) through memory

• Expansion on prefetch queue idea
– Prefetches based on branch target prediction
– Retains paths taken through instruction memory in a cache so it will be there next

time the first instruction of the trace segment is encountered

• Includes effects of branch target prediction
• Name comes from trace scheduling (multiflow VLIW machine)

18-548/15-548 Cache Data Organization 9/14/98

11

Instruction-Only Caches
u Separate cache just for instructions

• Full cache implementation with arbitrary addressability to contents
• Single-ported cache used at essentially 100% of bandwidth

– Every instruction has an instruction
– But not every instruction has a data load/store...

u Often implemented assuming only reads
• Consistency can be a problem if writes actually happen

(and they do ... discussed in a few minutes)

Instruction Cache DTMR
u Associative, demand fetch, write back, LRU

DTMR INSTRUCTION CACHE MISS RATES

CACHE SIZE (Bytes)

1K 10K 100K 1000K

M
IS

S
 R

A
TE

0.0010

0.0100

0.1000

1.0000

BLOCK SIZE
(Bytes)

4
8
16
32
64
128

(After Flynn Fig. 5.28)

18-548/15-548 Cache Data Organization 9/14/98

12

Branch Target Cache
u Special I-cache -- holds instructions at branch target

• Used in AMD 29000 to make most of very small I-cache, no D-cache
– Embedded controller; low cost (e.g., laser printers)

u Hides latency of DRAM access
• In-line instructions fetched in page mode from DRAM
• Branching causes delay for new DRAM page fetch
• Branch Target Cache keeps instructions flowing during DRAM access latency

u Used in conjunction with branch prediction strategies
• AMD 29000 predicts branch taken if BTC hit; otherwise keeps fetching in-line
• Branch prediction details beyond scope of this course

AMD 29000 Branch Target Cache

(Cragon Figure 7.12)

18-548/15-548 Cache Data Organization 9/14/98

13

DATA CACHE

Data Caches
u Must support reads & writes

• Approximately 75% of data accesses reads
• Approximately 25% of data accesses writes

u Probably dual-ported for superscalars with multiple concurrent
loads/stores
• The two data elements probably aren’t in same cache block

SPARC
Integer

SPARC
Floating
Point

MIPS
Integer

MIPS
Floating
Point

IBM
S/360 VAX Average

Instruction .79 .80 .76 .77 .50 .65 .71
Data Read .15 .17 .15 .19 .35 .28 .22
Data Write .06 .03 .09 .04 .15 .07 .07

18-548/15-548 Cache Data Organization 9/14/98

14

Data Cache DTMR
u Fully associative, demand fetch, write allocate, write back, LRU

DTMR DATA CACHE MISS RATES

CACHE SIZE (Bytes)

1K 10K 100K 1000K

M
IS

S
 R

A
TE

0.0010

0.0100

0.1000

1.0000

BLOCK SIZE
(Bytes)

4
8
16
32
64
128

(After Flynn Fig. 5.29)

Special Data Caches
u Translation Lookaside Buffer

• Stores address translation information between virtual and physical addresses

u “Stack Cache” used by CRISP processor (a.k.a. Hobbit chip)
• Kept top of activation record stack for C programs in small on-chip cache
• 32-word cache gave 19% data hit rate

– Memory-to-memory addressing model
– One way of looking at it is hardware-managed instead of compiler-managed register

allocation

18-548/15-548 Cache Data Organization 9/14/98

15

D-Cache / I-Cache Consistency
u I-cache contents can become stale if modified

• Self-modifying code
– Hand-written code
– Incremental compilers/interpreters
– Just-In-Time compilation

• Intermingled data & instructions (e.g., FORTRAN)
u Approaches with split I- & D-cache

• Ignore and have SW flush cache when necessary (e.g., loader flushes)
• Trap with page faults (if data & code aren’t intermingled)
• Permit duplicate lines; invalidate I-cache line on D-cache write
• Do not permit duplicate lines; invalidate either I-cache or D-cache when other

obtains copy
u No-duplicate-line policy can hurt FORTRAN performance

u Or, you can just use a unified cache...

Concept In Real Life...
u Name a real-life situation that is analogous to a split cache situation

• There should be a distinction between the sides of the “split”
• Have you noticed problems with load-balancing?

18-548/15-548 Cache Data Organization 9/14/98

16

UNIFIED CACHE

Split or Unified Cache?
u Split cache

• Separate I-cache optimized for Instruction stream
• Separate D-cache optimized for read+write
• Can independently tune caches
• Provides increased bandwidth via replication (2 caches accessed in parallel)

u Unified cache
• Single cache holds both Instructions and Data
• More flexible for changing instruction & data locality
• No problem with instruction modification (self-modifying code, etc.)
• Increased cost to provide bandwidth enough for instruction+data every clock

cycle
– Need dual-ported memory or cycle cache at 2x clock speed
– Alternately, can take an extra clock for loads/stores for low cost designs; they don’t

happen for every instruction

18-548/15-548 Cache Data Organization 9/14/98

17

Unified Caches
u Instructions & Data in same cache memory
u Requires adding bandwidth for simultaneous I- and D-fetch, such as:

• Dual ported memory -- larger than single-ported memory
• Cycle cache at 2x clock rate
• Use I-fetch queue

– Fetch entire block into queue when needed; larger than single instruction
– 1-Cycle delay if I-fetch queue empty and need data

u No problems with I-cache modifications; entire cache supports writes
• Single set of control logic (but, can have two misses in a single clock cycle)

u Flexible use of memory
• Automatically uses memory for instruction or data as beneficial
• Results in higher hit rate

u Falling out of favor for L1 caches, but common for L2 caches

Split vs. Unified Data
u Unified size S compared to I-cache size S/2 + D-cache size S/2

(Flynn Fig. 5.27)

18-548/15-548 Cache Data Organization 9/14/98

18

Split & Unified TLBs
u Similar tradeoffs to split & unified caches

u Split TLB provides address translation bandwidth
• Simultaneous Instruction & Data address translation
• Can size TLBs depending on locality at the page level

– Alpha 21164 has 64 D-TLB entries; 48 I-TLB entries
– Pentium has 64 D-TLB entries; 32 I-TLB entries

u Unified TLB provides more flexible allocation
• HP-PA 8000 has 96 entries in a unified TLB
• Power PC 603e has 64 entries in a unified TLB

SECTORS & BLOCKS

18-548/15-548 Cache Data Organization 9/14/98

19

Sectors Share Tag Among Blocks

u Sectors reduce proportional tag overhead
• Single tag shared by several blocks; exploits spatial locality

u H&P use of word “block” is actually for “sector”; many other authors
as well
• “sub-block placement” equivalent to sector+block arrangement
• “large” and “small” blocks usually equivalent to “large” and “small” sectors for

performance trends.

u Typical block size for on-chip cache now 32-64 bytes

Why Large Sectors & Blocks?
u Reduced cost for tags

• Words per sector determines pro-rated overhead for tags
u Large sector size

• Fewer tags needed
• But, fewer unique locations to place data

– Pmiss tends to increase to extent that spatial locality is poor

u Large blocks
• Fewer valid/dirty/shared bits needed
• Exploits burst memory transfer modes
• Provides bandwidth for I-fetching

– Multiple instruction fetch for superscalar
– Instruction queue load of multiple words

• 64-bit or larger blocks provides double float load/store bandwidth
• But, cache misses consume more fetch/store bandwidth (cache memory

pollution)

18-548/15-548 Cache Data Organization 9/14/98

20

Why Small Sectors & Blocks?
u Reduces memory traffic & latency compared to larger blocks

• More flexibility in data placement, at cost of higher tag space overhead
u Small sector size

• More unique locations to place data
• But, more bits spent on tags (limiting case is 1 block/sector = 1 tag/block)

u Smaller block size
• Simpler design (e.g., direct mapped cache, block size of 1 word)
• Fewer words to read from memory on miss
• Fewer words to write to memory on write back eviction
• Lower traffic ratio
• But, does not exploit burst mode transfers; not necessarily fastest overall design

DTMR for Block Size
u Associative, demand fetch, write allocate, write back, LRU

DTMR CACHE MISS RATES

CACHE SIZE (Bytes)

1K 10K 100K 1000K

M
IS

S
 R

A
TE

0.0010

0.0100

0.1000

1.0000

BLOCK SIZE
(Bytes)

4
8
16
32
64
128

(Source: Flynn Table A.1)

18-548/15-548 Cache Data Organization 9/14/98

21

Miss Rate for Block Sizes
u Miss rates go down until blocks are significant fraction of cache size

DTMR MISS RATES

BLOCK SIZE (Bytes)
4 8 16 32 64 128

M
IS

S
 R

A
TE

0.0010

0.0100

0.1000

1.0000

CACHE SIZE
(Bytes)

1K
4K
16K
64K
256K
1024K

(Source: Flynn Appendix A)

Bus Traffic & Block Size
u Bus traffic increases with block size, except (perhaps) with large caches

DTMR BUS TRAFFIC RATIO

BLOCK SIZE (Bytes)

4 8 16 32 64 128

B
U

S
 T

R
A

FF
IC

 R
A

TI
O

0.1000

1.0000

10.0000

CACHE SIZE
(Bytes)

1K
4K
16K
64K
256K
1024K

(Source: Flynn Appendix A)

18-548/15-548 Cache Data Organization 9/14/98

22

Effects of Extremely Large Sectors
u With only a few sectors in the cache, conflict misses increase

dramatically

(Hennessy & Patterson Figure 5.11)

Effective Access Time & Block Size
• tea goes down with larger block size as temporal locality is exploited
• tea goes back up when cache memory pollution becomes prevalent

EXAMPLE EFFECTIVE ACCESS TIME

BLOCK SIZE (Bytes)

4 8 16 32 64 128

C
LO

C
K

S

1.0000

10.0000

CACHE SIZE
(Bytes)

1K
4K
16K
64K
256K
1024K

DTMR:
10 clocks for 1st 4 bytes on miss
2 clocks for remaining 4-byte words

1 clock cache hit

18-548/15-548 Cache Data Organization 9/14/98

23

Blocks Elsewhere
u Virtual Memory System

• Page » Sector with 1 block
• Large page may waste memory space if not fully filled
• Small page has high overhead for address translation information (e.g., requires

more TLB entries for programs with good locality)

u Disk Drives
• File system cluster (in DOS) » Cache Sector
• Disk Sector » Cache block
• Large sector size promotes efficient transfers, but wastes space with partially

filled or only slightly modified sectors.

REVIEW

18-548/15-548 Cache Data Organization 9/14/98

24

Review
u Design Target Miss Rates

• A conservative starting point for designs, but a bit dated
u Instructions and Data have different caching needs

• I-cache: prefetching, branches, “read-mostly”
• D-cache: writes, poorer locality
• Split cache gives bandwidth, unified cache gives flexibility

u Cache sectors & blocks aren’t quite the same
• Sectors account for amortized overhead of tags vs. miss rate
• Block lengths are determined by data transfer widths and expected spatial

locality
u Sectors & Blocks

• Bigger is better -- when there is spatial locality
• Smaller is better -- when there isn’t enough spatial locality

– Conflict misses when too few sectors in the cache
– Traffic ratio goes up if not enough words are actually used from each block

Key Concepts
u Latency

• It’s pretty easy to get speedup by buffering instructions, even without a cache
u Bandwidth

• Split I- & D- caches increase bandwidth, at cost of loss of flexibility
• Larger blocks exploit any high-bandwidth transfer capabilities

u Concurrency
• Split caches & split TLBs double bandwidth by using concurrent accesses

u Balance
• Block size must balance miss rate against traffic ratio

