
18-548/15-548 Cache Organization 9/2/98

1

4
Cache

Organization
18-548/15-548 Memory System Architecture

Philip Koopman
September 2, 1998

Required Reading: Cragon 2.1, 2.1.2, 2.1.3, 2.2-2.2.2
Supplemental Reading: Hennessy & Patterson 5.1, 5.2, pp. 390-393

Assignments
u By next class read:

• Cragon 3.0-3.3.1; 3.4 to top of page 166
– You are not accountable for the details of the examples

u Supplemental reading:
• Hennessy & Patterson: 5.7, 5.8
• http://www.cne.gmu.edu/modules/vm/submap.html
• Virtual Memory: Issues of Implementation (Computer, June 1998)

u Homework #2 due next Wednesday
• Physical Memory
• Cache organization & access

u Lab #1 due Friday 3:00 PM to course secretary
• Short answers are in general better than long ones (single sentence is fine)
• BUT, be sure to put something down for each question asked.

18-548/15-548 Cache Organization 9/2/98

2

Where Are We Now?
u Where we’ve been:

• Physical memory hierarchy
– CPU registers
– Cache
– Bus
– Main Memory
– Mass storage

u Where we’re going today:
• Cache organization -- a key piece of the physical memory hierarchy

– How it works
– Performance metrics

u Where we’re going next:
• Virtual memory architecture -- address mapping within memory hierarchy

Preview
u Cache organization

• Terminology
• Data Organization
• Control status bit organization

u Conceptual cache operation
• Hits, misses, access sequences

u Quantifying cache performance
• 3 “C”s -- different causes of cache misses
• Effective memory access time

18-548/15-548 Cache Organization 9/2/98

3

Caches Within the Reference Memory Hierarchy

REGISTER
FILE

ON-CHIP
L1 CACHE

TLB

(?)
ON-CHIP

L2 CACHE

E-UNIT

L2/L3
CACHE

(?)
L3/L4

CACHE

VIRTUAL
MEMORY

CD-ROM
TAPE
etc.

INTER-
CONNECTION

NETWORK

CPU

OTHER
COMPUTERS

& WWW

I-UNIT

SPECIAL-
PURPOSE
CACHES

SPECIAL-
PURPOSE
MEMORY

MAIN
MEMORY

DISK FILES &
DATABASES

CACHE BYPASS

Cache Memory
u A small, high speed memory close to the CPU

• Each line of cache memory can be “occupied” or “empty”
• “Occupied” lines map to a memory location
• Hardware cache management mechanism (potentially with software hints)
• Typically used for both programs and data

u Also, by extension, other specialized hardware or software buffers
• TLB for mapping physical to virtual memory addresses
• Disk sector storage
• Network machine name to IP address translation
• Read and write buffers

u Works because of locality
• (Doesn’t work when there isn’t locality)

u First commercial use: ____________________

18-548/15-548 Cache Organization 9/2/98

4

Typical Implementation Technologies

Isn’t Cache a Solved Problem?
u 8 KB cache effectiveness over time

• But for practical purposes total L1 cache is limited to 8-32KB on chip in most
designs

(Flynn Figure 5.15)

18-548/15-548 Cache Organization 9/2/98

5

CACHE ORGANIZATION

Major Cache Design Decisions
u Cache Size -- in bytes
u Split/Unified -- instructions and data in same cache?

Associativity -- how many sectors in each set?
u Sector/Block size -- how many bytes grouped together as a unit?

• Cache “Block” also called Cache “Line”
u How many levels of cache?

• Perhaps L1 cache on-chip; L2 cache on-module; L3 cache on motherboard
+

u Management policies
• Choosing victim for replacement on cache miss

– FIFO, Least Recently Used, random

• Handling writes (when is write accomplished?; is written data cached?)
– Write allocate: allocates a cache block if a write results in a cache miss
– Write through: all written data goes “through” cache and onto bus
– Write back: written data remains in cache until cache block is replaced, then to bus

• Ability to set or over-ride policies in software

18-548/15-548 Cache Organization 9/2/98

6

Terminology
u Cache functions:

• I-cache: holds instructions
• D-cache: holds data
• Unified cache: holds both instructions and data
• Split cache: system with separate I-cache and D-cache

More Terminology
u Hit - a cache access finds data resident in the cache memory
u Miss - a cache access does not find data resident, forcing access to next

layer down in memory hierarchy
u Miss ratio - percent of misses compared to all accesses = Pmiss

• When performing analysis, always refer to miss ratio!
• 5% miss ratio compared to 10% miss ratio -- not 95% compared to 90% hit

ratios
u Traffic ratio - percent of data words to “bus” (or next level down)

compared to data words transferred to “CPU” (or next level up)
• Caches can act as a “filter” to attenuate bus traffic; traffic ratio is an indication

of effectiveness
u Hit access time - number of clocks to return a cache hit
u Miss penalty - number of clocks to process a cache miss (typically, in

addition to at least one clock of the hit time)

18-548/15-548 Cache Organization 9/2/98

7

Cache Treats Memory as a Set of Blocks
u Cache is addressed using a partial memory address

• High-order bits determine correspondence between cache and memory block
u Translation may include virtual to physical translation (covered later)

(Cragon Fig. 2.2)

Elements of Cache Organization
• V, D, S, LRU are status bits
• Cragon’s “AU” can also be called a “word” (e.g., 32 bits)

(Cragon Figure 2.3)

18-548/15-548 Cache Organization 9/2/98

8

Per-Block Control bits
u Control bits are per block (as opposed to tags per sector) to reduce

memory accesses
u Valid: does entry contain valid data (as opposed to being “empty”)

• Could be in middle of filling a cache sector
• Could have been invalidated by a program or by coherence protocol

u Dirty: is data modified from what is resident in memory?
• “write-back” cache holds modifications in cache until line is flushed to memory

u Shared: is data shared within a multiprocessor (may be more than one
bit depending on coherence scheme)?

u LRU: bit to track Least Recently Used replacement status

CACHE OPERATION

18-548/15-548 Cache Organization 9/2/98

9

Conceptual Cache Operation

Example Cache Lookup Operation -- Hit
u Assume cache “hit” at address 0x345678 (word access)

18-548/15-548 Cache Organization 9/2/98

10

Example Cache Lookup Operation -- Miss
u Assume cache “miss” at address 0x345678 (word access)

VALID?
(1 BIT)

TAG
(10 BITS)

DATA
(8 BYTES)

. . .
BLOCK

NUMBER
2CF

0x2CF 0x00xD1

0x37
0xD1

0x345678

WHICH
BYTE?

WHICH
BLOCK?

TAG DOESN'T MATCH =
CACHE MISS!

10 BITS 11 BITS
3 BITS

LOW 4 BYTE WORD HIGH 4 BYTE WORD

Example Cache Organization: [8,2,2,2]
u 2-way Set Associative
u [8 sets, 2 sectors, 2 blocks, 2 words] = 64 words in cache

• 2 words / block
• 2 blocks / sector
• 2 sectors / set
• 8 sets / entire cache

18-548/15-548 Cache Organization 9/2/98

11

Address Formation (generalized)
u Memory address broken into fields to compose cache address

(improved from Cragon Figure 2.5)

Cache Addressing Example

18-548/15-548 Cache Organization 9/2/98

12

Cache Size
u Number of Words (AUs) = [S x SE x B x W]

• S = SETs in cache
• SE = SECTORs (degree of associativity) in set
• B = BLOCKs in sector
• W = WORDs in block

u Example: [128, 4, 2, 8] cache
128 x 4 x 2 x 8 = 8 Kwords

• 128 sets
• 4 sectors per set (4-way set associative)
• 2 blocks / sector
• 8 words / block (for 32-bit words = 32 bytes/block)

Cache Interface Example

u Block sizes exploit spatial
locality
• CPU-L1 interface driven by data

size (e.g., 8-byte double floats)
u Physical word sizes driven by

pinout limitations
• Off chip L2 interface driven by

pin count limits
• Memory interfaces driven by

memory bus costs
VIRTUAL MEMORY

PAGE SIZE = 4K BYTES

PHYSICAL MEMORY
DRAM PAGE = 1K BYTES

L2 CACHE
BLOCK SIZE=64 BYTES

L1 CACHE
BLOCK SIZE=64 BYTES

PHYSICAL WORD = 8 BYTES

PHYSICAL WORD = 4 BYTES

PHYSICAL WORD = 4 BYTES

 ACCESSED AS 8 BYTE DWORDS CPU
CHIP

18-548/15-548 Cache Organization 9/2/98

13

CACHE ACCESS SEQUENCE

Simplified Cache Functions
u Determine if cache hit or miss
u If miss:

• Use policy information to determine whether a cache block must be allocated
• If allocation required, select a cache location to allocate (a “victim”)

– If selected location has modified data, copy data to lower hierarchy level
– Set tag to map cache address to new memory level address
– Fetch any required data from memory to fill cache word(s)

u If read: return datum value

u If write: update datum value

18-548/15-548 Cache Organization 9/2/98

14

Early Select Cache
(Cragon Fig 2.11)

Early Select Operation
u Tag lookup done before data access

• Data access waits for tag to be available
u Translation address used to access data memory

• Flexibility of arbitrary data location (“fully associative”)
• BUT potentially slow critical path

u Best used when tag matching is much faster than data retrieval
• This could happen when tags are in faster storage than data they refer to, e.g.:

– On-chip tags but off-chip data memory
– Tags in RAM but data on disk
– Note that this is mostly applicable to virtual memory

• It’s not that the tag matching is free, but rather that the flexibility it gives
(presumably) makes up for a relatively small addition to the serialized lookup
path delay.

• Also used on Alpha L2 cache for power savings
– Only cycles one third of cache in 3-way set associative organization

18-548/15-548 Cache Organization 9/2/98

15

Late Select Cache
u Tag and data lookup in parallel; gate data at end of cycle

(Cragon Fig 2.11)

Late Select Operation
u Data lookup done in parallel with tag match

• Data either used or not used depending on whether any tag matched
• Set associativity adds an element of late select operation

– Which tag matches controls which data is gated
– If no associativity, data may be available before knowing if there is a hit

u Late select used for most cache memories

18-548/15-548 Cache Organization 9/2/98

16

CACHE MISSES

Baseline Actions on Cache Access
u Read:

• Determine if data is in cache (hit or miss)
• If miss, determine victim block for replacement
• If victim sector has any “dirty” blocks (unsaved data), flush to memory
• Annotate tag on victim sector to refer to new address
• Fill victim block with new data (modify LRU bit; set valid bit; prefetch?)

u Write:
• Determine if data is in cache (hit or miss)
• If hit, write data to appropriate cache block

– If write through policy, also write data to main memory

• If miss, either:
– If no-write-allocate policy, write data to main memory
– If write allocate policy

» Perform a cache read if block size > size of written datum
» Write datum into cache
» If write through policy, also write data to main memory

18-548/15-548 Cache Organization 9/2/98

17

Cache Misses
Pmiss = Pcompulsory + Pcapacity + Pconflict

u Compulsory:
• Previously unreferenced blocks
• Compulsory miss ratio is that of an infinitely large cache

u Capacity:
• Sectors that have been discarded to make room for new sectors
• A fully associative cache experiences only compulsory and capacity misses

u Conflict misses:
• Set associative caches must discard a sector within a set to allocate a block on a

miss, even if other sets have unused sectors

u Warm cache: process has been running “a long time”
u Cold cache: cache has been flushed

• Some other task might have “stomped on” the cache
• Software I/O synchronization might flush/invalidate cache

Example Absolute Miss Rates
u Reducing associativity introduces conflict misses

(Hennessy & Patterson Fig. 5.10)

18-548/15-548 Cache Organization 9/2/98

18

Example Relative Miss Rates

(Hennessy & Patterson Fig. 5.10)

EFFECTIVE MEMORY
ACCESS TIME

18-548/15-548 Cache Organization 9/2/98

19

Cache Effectiveness Metrics
u Access time: (LATENCY)

• thit often 1 clock cycle for L1 cache, 2 or more clocks for L2 cache
• tmiss can be tens of clock cycles in many cases
• tea = average access time (depends on miss ratio)

u Bus traffic ratio: (BANDWIDTH)
ratio of bus traffic with cache to traffic without cache
• Can be > 1with write-back caches
• Traffic ratio can be critically important on multiprocessors, where cache is used

as a filter to reduce shared bus traffic

Cache Access Strategies
u Sequential -- memory

access starts after cache
miss

u Forward -- data available
during cache write

u Sequential-Forward is
commonly used model
• T starts with address sent

to memory
• T ends with data returned

from memory
• Memory not activated

unless there is a cache
miss

(After Cragon Fig. 2.12)

18-548/15-548 Cache Organization 9/2/98

20

Effective Access Time
u tea = (1 - Pmiss) * thit + Pmiss * tmiss

u Sequential-Forward is typical design
• Concurrent main memory reference hogs the memory bus
• Forwarding reduces latency with minimal cost

u “Transport time” = “miss penalty”

u For sequential-forward case:
• tea = cache access time Ü CACHE HITS

 + Pmiss * transport time Ü CACHE MISSES

Simple (Read-only) Transport Time
u Read model for either interleaved or burst caches

• T transport time
• a latency to access first bus access
• b latency for each subsequent bus accesses
• A number of words in block
• W number of words that fit on access bus (width of bus)

T a b
A

W
= + -

æ
è
ç ö

ø
÷1

T a b
b A
W

= - + *æ
è
ç ö

ø
÷

18-548/15-548 Cache Organization 9/2/98

21

Simple (Read-only) Bus Traffic Model
u Bus traffic ratio = Pmiss * block size

u Example:
• Pmiss = 0.05
• block size = 4 words
• Traffic ratio = 0.05 * 4 = 0.20 memory words per memory reference

u Bus delay (lower bound on execution time)
• Traffic ratio * Transport Time
• For 4+1+1+1 access: 0.20 * 7 = 1.4 clocks per memory reference

REVIEW

18-548/15-548 Cache Organization 9/2/98

22

Review
u Locality: temporal, spatial, sequential
u Cache organization

• Sets, sectors, blocks
– [S sets, SE sectors, B blocks, W words] = S * SE * B * W words in cache

• Tags, dirty, shared, LRU
u Cache operation

• Search for match, decide if miss
• Select & update contents

u Cache misses: compulsory, capacity, conflict
• tea = (1 - Pmiss) * thit + Pmiss * tmiss

T a b
A

W
= + -

æ
è
ç ö

ø
÷1

Address Formation (generalized)
u Memory address broken into fields to compose cache address

(improved from Cragon Figure 2.5)

18-548/15-548 Cache Organization 9/2/98

23

Key Concepts
u Latency

• Late select minimizes latency by accessing data & tag in parallel
• Average cache access latency depends on compulsory, capacity, conflict misses
• Transport time depends on miss ratios & access latencies

u Bandwidth
• Block size determines bandwidth opportunities (can move an entire block at a

time, data paths permitting)
• Bus traffic ratio depends on miss rate and block size

u Concurrency
• Multiple blocks per sector permits sharing cost of tag in cache

u Balance
• Sector size (to save space) vs. number of sets in cache (to gain flexibility) is a

key balance tradeoff that will be discussed in another lecture
• Transport time (miss rate) vs. bus traffic ratio is another key balance issue

RECITATION
MATERIAL

18-548/15-548 Cache Organization 9/2/98

24

Example Read Transport Time
u Embedded 32-bit CPU; cache block size of 4 x 32-bit words;

8-bit memory bus at half CPU speed; 1 byte/bus cycle + 2 bus cycles
overhead to start transfers

u All clocks are in terms of CPU clocks
• a = 4+2=6 clocks (4 clocks to reach memory + 2 clocks first byte xfer)
• b = 2 clocks (CPU clock cycles twice for each bus access)
• A = 4 (4 @ 32-bit words in a block)
• W = 0.25 (.25 words (1 byte of 4) transferred per bus cycle)

T a b
A

W
= + -

æ
è
ç ö

ø
÷1

T = + -
æ
è
ç ö

ø
÷= + =6 2

4
0 25

1 6 2 15 36
.

() CPU clocks

