
18-548 Course Introduction 8/26/98

1

18-548
Memory Systems

Architecture
Prof. Philip Koopman

Lecture: Monday & Wednesday 9:00-10:20 AM in DH 2122
Recitation: Friday 10:30-11:20 AM in HH B131

12 Units

Preview
u Course information

• Goals
• Administrative info
• Materials
• Grading

u Computer trends
• Why is memory hierarchy such a big deal?

u Preview of course

18-548 Course Introduction 8/26/98

2

Course Goals
u Deep understanding of data flows & storage within computer systems

• Key architectural principles:
– Latency / Bandwidth / Replication / Balance / Hierarchy

• Applied to:
– Cache memory; Main memory; Buses; Vector processing; Virtual memory

Multiprocessor coherence

u Demonstrate and apply principles
• Design tradeoffs: prediction & measurement
• Software speedup using advanced memory architecture understanding

u Practice research/architecture skills
• Running simulations & interpreting experimental data
• Focus more on analysis+experimentation than on design synthesis

Administrative Notes
u People:

• Instructor:Prof. Phil Koopman koopman@cmu.edu HH D-202
• TA: Erik Riedel riedel+@CMU.EDU WeH 8114

Greg Mann gm3g+@andrew.cmu.edu
• Secretary: Karen Lindenfelser karen@ece.cmu.edu HH D-204

u Course web page:
• http://www.ece.cmu.edu/~ece548
• Contains office hours and other important information

u Course communications:
• cmu.ece.class.ece548

– Mandatory reading for announcements
– Unmoderated; OK to use for discussion of class-related issues

18-548 Course Introduction 8/26/98

3

Required Textbook: Cragon
u Memory Systems and Pipelined Processors

Cragon
• Newer textbook that concentrates on memory first
• Good details, but better read as a “reference” than as a novel
• If there is some obscure issue, Cragon probably discusses it...

u Coverage:
1) Memory Systems
2) Caches
3) Virtual Memory
4) Memory Addressing and I/O Coherency
5) Interleaved Memory and Disk Systems
11) Vector Processors

Recommended Text: Hennessy & Patterson
u Computer Architecture: a quantitative approach

Hennessy & Patterson (2nd. edition)
• A update of a classic in the field; based on quantitative simulation
• For our purposes, more breadth than depth
• Use for orientation to area; but skips many details
• You ought to have read the first half of the book (or have equivalent

knowledge) as a pre-requisite for this course
• We’re not going to go into the DLX architecture

u Coverage:
5) Memory-Hierarchy Design
6) Storage Systems
8) Multiprocessors
App. B) Vector Processors

18-548 Course Introduction 8/26/98

4

Simulation Tools
u Dinero -- cache simulator

• Special version will be used
– Not limited to 32-bit operation
– Modified for multi-level cache simulations

• Compiles & runs on most Unix platforms
– Only supported versions will be on IBM PPC workstations in the “HP Lab” &

DEC Alphas we will provide accounts on
– Must run on a 64-bit processor to handle 64-bit address traces

u Atom -- program annotation tool
• Annotates programs to record/generate information

– We’ll be using primarily to generate address traces for cache simulations
– Does many other nifty things (see the man page...)

• Only works on DEC Alphas -- we will provide accounts
– ECE students must have an ECE account
– We’re working with ECE facilities to create accounts for CS students

Grading
u Grade distribution:

• 20% first test
• 25% second test
• 25% third test
• 10% distributed among approximately 11 weekly homework sets
• 20% distributed among 5 lab assignments (note: no physical “lab” room)
• 5-point grading system per question

u Assignments must be handed in on time
• Homeworks due Wednesday in class on due date; solutions handed out Fridays
• Labs due Friday afternoons at 3 PM to course secretary; solutions next Friday
• Late materials accepted until solutions handed out; 10% penalty/day late
• Don’t run computer simulations at the last minute!

– Expect machines to be overloaded the night before an assignment is due

u All products must be a result of your own efforts
• However, you may ask for general guidance from staff & fellow students

18-548 Course Introduction 8/26/98

5

1
Course Introduction

18-548 Memory System Architecture
Philip Koopman
August 26, 1998

Assignments
u By next class read about Key Concepts:

• Hennessy & Patterson: page 7, Section 1.7
• Cragon, Chapter 1

• Supplemental reading: All of Hennessy & Patterson Chapter 1

u Homework due by next class:
Send e-mail information to:
riedel+@cmu.edu, koopman@cmu.edu
• Full name & preferred nickname + pronunciation
• Preferred e-mail address (not necessarily ECE or even CMU)
• ECE account name if ECE student
• CS and Andrew account name if CS student
• One sentence on area of graduate research (if any)

18-548 Course Introduction 8/26/98

6

Where Are We Now?
u Where we’re going today:

• Sampling of material for entire course

u Where we’re going next:
• Key concepts
• Physical memory vs. virtual memory
• Caches

COMPUTER TRENDS

18-548 Course Introduction 8/26/98

7

Capacity Growth
u Good news -- exponential growth in hardware capacity

• Logic growth: 60% to 80% per year
• DRAM growth: 60% per year (in 400% increments/3 years)
• Disk growth: 50% per year (was 25%/year until 1990)

u Bad news -- exponential growth in hardware usage
• Program size: 50% to 100% per year

– Increase software productivity -- standard components/interface layers
– Feature list increases -- “bloatware”
– Memory used to enhance user interface -- GUI

u Results
• Storage may be approaching “free” on a per-bit basis,

but somehow it always seems to be full

Computer Performance
u task time = number of instructions executed

* clocks per instruction (CPI)
* clock period

u Number of instructions depends on ISA, language, compiler
u Overall clocks per instruction:

• Instruction complexity (usually 1 clock, but can be longer)
• Instruction issue rate (superscalar may be > 1 issue/clock)
• Data dependence & resource stalls
• *Instruction fetch latency
• *Data fetch/store latency

u Clock period
• Logic critical path (e.g., hardware multiplier) & clock distribution tree
• *First level cache cycle time

* = emphasized in this course

18-548 Course Introduction 8/26/98

8

Memory/CPU Speed Gap

YEAR OF INTRODUCTION

1982 1984 1986 1988 1990 1992 1994 1996 1998

S
pe

ed
 (M

H
z)

0

50

100

150

200

250

300

80286
80386

80486

PENTIUM

PENTIUM PRO

PENTIUM II

INTEL C
PU SPEED

DRAM ACCESS SPEED

Raw Speed Gap Projection

Relative Speed Trends

1

10

100

1000

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

DISK SPEED
DRAM SPEED

SRAM SPEED

CPU SPEED

Speed (MHz)

YEAR

(after Cragon Figure 1.1)

18-548 Course Introduction 8/26/98

9

Why Not Just Use SRAM?
u Off-chip vs. on-chip access limitations

• Delay -- pins are (in general) slower than on-chip access
 (more recently, across-chip is slower than nearby-on-chip)

• Bandwidth -- a few hundred pins vs. thousands of traces
u Density

• e.g., 15 ns 256 MB of SRAM using 256 KB SIMMS = 1024 SIMMS
• Address/data line fan-out & chip select slowdown ~ log N
• Physical propagation delay

u Heat/power
• 1024 SIMMS @ ~1000 mW (standby for async SRAM) =>1 KW power

u Cost
• $30/SIMM (December 1996) => $30,000 (less quantity discount...)

u Slower technology tends to be more cost effective
• 60 ns 32 MB DRAM SIMM $270 => 8 SIMMS, $2160
• 256 MB is too small a disk to buy (about $0.32 / MB 8 ms => $82)

COURSE SAMPLER

18-548 Course Introduction 8/26/98

10

There’s More to a Computer Than Just a CPU

(Messmer Figure 22.1)

INTRO &
OVERVIEW

KEY
CONCEPTS

PHYSICAL
MEMORY

CACHE
ORGANIZATION

VIRTUAL
MEMORY

DATA
MANAGEMENT

POLICIES

ASSOCIATIVITY

TUNING SW
FOR SPEED

EXAM 1

MAIN
MEMORY

ARCHITECTURE

CACHE DATA
ORGANIZATION

MAIN
MEMORY

PERFORMANCE

SYSTEM-LEVEL
EFFECTS

VECTOR
ARCHITECTURE

VECTOR
PERFORMANCE

MASS
STORAGE

MULTIPROCESSOR
COHERENCE

FAULT
TOLERANCE

EXAM 2 EXAM 3

DEVICES & AREA

MULTI-LEVEL
STRATEGIES

SYSTEM
BUS

CMU 18-548 -- FALL 1998 -- COURSE COVERAGE

18-548 Course Introduction 8/26/98

11

Key Concepts
u Latency -- delay

• Minimize delay to limit length of stalls waiting for data
u Bandwidth -- data moved per unit time

• Maximize data path widths & clock rates

u Concurrency -- multiple units (or pipelining to re-use a single unit)
• Adding resources can increase bandwidth
• Exploiting concurrency can reduce latency

u Balance -- avoiding performance bottlenecks
• Bottlenecks limit system performance

balanced systems have no real bottlenecks

u Memory hierarchy -- a way to balance
speed with cost by exploiting locality
(re-use/nearness) of memory accesses

DISK

DRAM

L2 CACHE

L1
CACHE

Reference Memory Hierarchy

REGISTER
FILE

ON-CHIP
L1 CACHE

TLB

(?)
ON-CHIP

L2 CACHE

E-UNIT

L2/L3
CACHE

(?)
L3/L4

CACHE

VIRTUAL
MEMORY

CD-ROM
TAPE
etc.

INTER-
CONNECTION

NETWORK

CPU

OTHER
COMPUTERS

& WWW

I-UNIT

SPECIAL-
PURPOSE
CACHES

SPECIAL-
PURPOSE
MEMORY

MAIN
MEMORY

DISK FILES &
DATABASES

CACHE BYPASS

18-548 Course Introduction 8/26/98

12

Example Memory Hierarchy
u Digital AlphaServer 4000 5/600 (Alpha 21164 CPU)

• Dual 600 MHz CPUs
– Registers
– On-chip 16 KB data cache + 16 KB instruction cache
– On-chip 96 KB level 2 cache
– Off-chip 8 MB level 3 cache

• 1024 MB main memory
• 40 GB disk storage
• Large networked file system (afs)

• Program loading device (CD ROM)
• Backup device (tape, network, WORM CD)
• Internet connection to WWW (via 100 Mb/sec switched port)

Address Space Hierarchy
u Virtual address translated to hardware address

• Physical address used if page is in main memory; disk address on page fault
• TLB (Translation Lookaside Buffer) caches address translation information

TASK 1

MAIN
MEMORY

DISK
SWAP
SPACE

ADDRESS
TRANSLATION

VIRTUAL
ADDRESS

TASK 2

ADDRESS
TRANSLATION

VIRTUAL
ADDRESS

PHYSICAL
ADDRESS

PHYSICAL
ADDRESS

TASK 1

TASK 1

TASK 1

TASK 1
TASK 1

TASK 1

TASK 2

TASK 2

TASK 2

TASK 2

DISK
ADDRESS

DISK
ADDRESS

18-548 Course Introduction 8/26/98

13

Cache Organization
u Cache organized as sectors, blocks, and sets

• Each sector corresponds to a location in memory (tag holds address)
• Cache lookup searches set to find matching address

– Hit -- found a tag match within set -- provide fast access to data
– Miss -- didn’t find a tag match -- perform slow access to next level in hierarchy
– Miss penalty -- clock cycles to process a miss

BLOCK 0 BLOCK 1

SECTOR 0

TAG V VD DWORD WORDWORD WORD TAG V VD DWORD WORDWORD WORD
TAG V VD DWORD WORDWORD WORD TAG V VD DWORD WORDWORD WORD
TAG V VD DWORD WORDWORD WORD TAG V VD DWORD WORDWORD WORD
TAG V VD DWORD WORDWORD WORD TAG V VD DWORD WORDWORD WORD
TAG V VD DWORD WORDWORD WORD TAG V VD DWORD WORDWORD WORD
TAG V VD DWORD WORDWORD WORD TAG V VD DWORD WORDWORD WORD
TAG V VD DWORD WORDWORD WORD TAG V VD DWORD WORDWORD WORD
TAG V VD DWORD WORDWORD WORD TAG V VD DWORD WORDWORD WORD

BLOCK 0 BLOCK 1

SECTOR 1

SET 0

SET 4

SET 1

SET 5

SET 2

SET 6

SET 3

SET 7

Major Cache Design Decisions
u Cache Size -- in bytes
u Split/Unified -- instructions and data in same cache?

u Associativity -- how many sectors in each set?
u Sector/Block size -- how many bytes grouped together as a unit?

u Management policies
• Choosing victim for replacement on cache miss
• Handling writes (when is write accomplished?; is written data cached?)

u How many levels of cache?
• Perhaps L1 cache on-chip; L2 cache on-module; L3 cache on motherboard

18-548 Course Introduction 8/26/98

14

System-Level Effects -- Context Switching
u Traditionally, cost of context switching is considered to be:

• Processing timer interrupt
• OS scheduling
• Register save
• Register restore

u But, the TRUE process state that might be lost includes:
• CPU information (branch prediction, buffers, speculative execution results)
• Cache contents
• TLB contents
• Virtual memory pages resident in memory
• Disk cache contents

u Important result: single-task simulations are typically very optimistic
compared to real-world performance

DRAM Read Cycle

RAS#

CAS#

ADDR

WE#

DQ

OE#

ROW COLUMN

VALID D

(Micron MT4LC16M4A7)

18-548 Course Introduction 8/26/98

15

Improving Main Memory Performance
u Interleaved memory -- multiple banks for concurrent accesses

u Use exotic DRAM technology
• EDO DRAM
• SDRAM
• Cached DRAM
• Rambus
• ...

(Cragon Figure 5.1)

Optimization of Matrix Multiplication
ALPHA WORKSTATION PERFORMANCE

TOTAL SIZE OF DATA ARRAYS

1K 10K 100K 1000K

M
B

/S
E

C
 D

A
T

A

0

10

20

30

40

50

60

70

80

90

100

110

120

ORIGINAL
LOOP INTERCHANGE
LOOP FUSION
ARRAY MERGING
READ/WRITE SPLIT
WRITE MERGING

16 KB

64 KB 256 KB

1024 KB

18-548 Course Introduction 8/26/98

16

Generic Vector Architecture

u Vector Address Generators perform concurrent prefetches & stores
u Vector Register File holds collated data sets to feed to pipelined functional units

BUS
(INTERCONNECT)

BANK 0 BANK 1 BANK 2 BANK 3

VECTOR
DATA

SWITCH
1 2 3 4 5 6 7

VECTOR
REGISTER

FILE

0

FUNCTIONAL
UNITS

MULADD

VECTOR
ADDRESS

GENERATORS

VAG 1VAG 0 VAG 2

4-WAY INTERLEAVED MEMORY

AD
D

R

AD
D

R

AD
D

R

AD
D

R

ADDR

Vector Computers Illustrate Performance Issues
u Code with a working set larger

than available cache will have
performance problems

u Vector computers teach us
techniques to deal with this
problem:
• Hardware prefetching of regular

data access patterns
• Techniques to segment accesses

to memory and reduce working
set to fit in available cache

Alpha Linpack Performance

Array Size (e.g., 100 x 100)

10 100 1000

M
FL

O
P

S

6

7

8

9

10

11

12

13

14

15

76 x 76 ~= 45 KB
32x32 = 8 KB

181x181 = 256 KB

18-548 Course Introduction 8/26/98

17

Blocked Matrix Multiply Performance
u “Blocked” algorithm uses small blocks to fit working set into cache

2D Matrix Multiply -- Alpha Workstation

Size of One Array (Bytes)

1K 10K 100K 1000K 10000K

S
pe

ed
 (e

qu
iv

al
en

t M
B

/s
ec

)

0

5

10

15

20

25

30

35

40

45

50

55

UNOPTIMIZED
BLOCK SIZE 1
BLOCK SIZE 2
BLOCK SIZE 4
BLOCK SIZE 16
BLOCK SIZE 64
BLOCK SIZE 128

L2 Cache Full

16

1

2

4

64

128

Multiprocessor Memory
u Bandwidth is an key issue
u So is ensuring coherence among shared memory locations

MEMORYI/O

CPU CPU CPU CPU

MEMORY

DIRECTORYI/O

CPU MEMORY

DIRECTORYI/O

CPU

MEMORY

DIRECTORYI/O

CPU MEMORY

DIRECTORYI/O

CPU

u Distributed memory
• Numerous processing elements

organized as clusters
interconnected

u Centralized shared memory
• Single memory shared over

interconnect

18-548 Course Introduction 8/26/98

18

Important Lessons in System Architecture
u Every level of memory hierarchy employs similar principles

• Registers
• Cache
• Main memory
• Disks
• Multiprocessors

u Address translation permits automatic management of memory
• Caches
• Virtual memory
• Multiprocessing

u A balance between latency and bandwidth is crucial
u Concurrency is an effective tool for improving performance

• Replication of resources
• Pipelining of individual resources
• Prefetching and delayed storing of data

REVIEW

18-548 Course Introduction 8/26/98

19

Review
u CPU / memory speed gap is increasing in size

• Clock speed & superscalar CPUs require more from memory
• But, memory isn’t keeping up with the demands

u Memory hierarchies are the obvious solution
• Registers
• Cache
• Main memory
• Disks
• Multiprocessor memories

u Key concepts apply at all levels
• Latency -- delay
• Bandwidth -- data moved per unit time
• Concurrency -- multiple units (or pipelining to re-use a single unit)
• Balance -- avoiding performance bottlenecks

