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18-548
Memory Systems

Architecture
Prof. Philip Koopman

Lecture: Monday & Wednesday 9:00-10:20 AM in DH 2122
Recitation: Friday 10:30-11:20 AM in HH B131

12 Units

Preview
u Course information

• Goals
• Administrative info
• Materials
• Grading

u Computer trends
• Why is memory hierarchy such a big deal?

u Preview of course
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Course Goals
u Deep understanding of data flows & storage within computer systems

• Key architectural principles:
– Latency / Bandwidth / Replication / Balance / Hierarchy

• Applied to:
– Cache memory; Main memory; Buses; Vector processing; Virtual memory

Multiprocessor coherence

u Demonstrate and apply principles
• Design tradeoffs: prediction & measurement
• Software speedup using advanced memory architecture understanding

u Practice research/architecture skills
• Running simulations & interpreting experimental data
• Focus more on analysis+experimentation than on design synthesis

Administrative Notes
u People:

• Instructor:Prof. Phil Koopman koopman@cmu.edu HH D-202
• TA: Erik Riedel riedel+@CMU.EDU WeH 8114

Greg Mann gm3g+@andrew.cmu.edu
• Secretary: Karen Lindenfelser karen@ece.cmu.edu HH D-204

u Course web page:
• http://www.ece.cmu.edu/~ece548
• Contains office hours and other important information

u Course communications:
• cmu.ece.class.ece548

– Mandatory reading for announcements
– Unmoderated; OK to use for discussion of class-related issues
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Required Textbook: Cragon
u Memory Systems and Pipelined Processors

Cragon
• Newer textbook that concentrates on memory first
• Good details, but better read as a “reference” than as a novel
• If there is some obscure issue, Cragon probably discusses it...

u Coverage:
1) Memory Systems
2) Caches
3) Virtual Memory
4) Memory Addressing and I/O Coherency
5) Interleaved Memory and Disk Systems
11) Vector Processors

Recommended Text: Hennessy & Patterson
u Computer Architecture: a quantitative approach

Hennessy & Patterson (2nd. edition)
• A update of a classic in the field; based on quantitative simulation
• For our purposes, more breadth than depth
• Use for orientation to area; but skips many details
• You ought to have read the first half of the book (or have equivalent

knowledge) as a pre-requisite for this course
• We’re not going to go into the DLX architecture

u Coverage:
5) Memory-Hierarchy Design
6) Storage Systems
8) Multiprocessors
App. B) Vector Processors
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Simulation Tools
u Dinero -- cache simulator

• Special version will be used
– Not limited to 32-bit operation
– Modified for multi-level cache simulations

• Compiles & runs on most Unix platforms
– Only supported versions will be on IBM PPC workstations in the “HP Lab” &

DEC Alphas we will provide accounts on
– Must run on a 64-bit processor to handle 64-bit address traces

u Atom -- program annotation tool
• Annotates programs to record/generate information

– We’ll be using primarily to generate address traces for cache simulations
– Does many other nifty things (see the man page...)

• Only works on DEC Alphas -- we will provide accounts
– ECE students must have an ECE account
– We’re working with ECE facilities to create accounts for CS students

Grading
u Grade distribution:

• 20% first test
• 25% second test
• 25% third test
• 10% distributed among approximately 11 weekly homework sets
• 20% distributed among 5 lab assignments  (note: no physical “lab” room)
• 5-point grading system per question

u Assignments must be handed in on time
• Homeworks due Wednesday in class on due date; solutions handed out Fridays
• Labs due Friday afternoons at 3 PM to course secretary; solutions next Friday
• Late materials accepted until solutions handed out; 10% penalty/day late
• Don’t run computer simulations at the last minute!

– Expect machines to be overloaded the night before an assignment is due

u All products must be a result of your own efforts
• However, you may ask for general guidance from staff & fellow students
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1
Course Introduction

18-548  Memory System Architecture
Philip Koopman
August 26, 1998

Assignments
u By next class read about Key Concepts:

• Hennessy & Patterson: page 7, Section 1.7
• Cragon, Chapter 1

• Supplemental reading:  All of Hennessy & Patterson Chapter 1

u Homework due by next class:
Send e-mail information to:
riedel+@cmu.edu, koopman@cmu.edu
• Full name & preferred nickname + pronunciation
• Preferred e-mail address (not necessarily ECE or even CMU)
• ECE account name if ECE student
• CS and Andrew account name if CS student
• One sentence on area of graduate research (if any)
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Where Are We Now?
u Where we’re going today:

• Sampling of material for entire course

u Where we’re going next:
• Key concepts
• Physical memory vs. virtual memory
• Caches

COMPUTER TRENDS



18-548  Course Introduction      8/26/98

7

Capacity Growth
u Good news -- exponential growth in hardware capacity

• Logic growth:  60% to 80% per year
• DRAM growth: 60% per year  (in 400% increments/3 years)
• Disk growth: 50% per year  (was 25%/year until 1990)

u Bad news -- exponential growth in hardware usage
• Program size: 50% to 100% per year

– Increase software productivity -- standard components/interface layers
– Feature list increases -- “bloatware”
– Memory used to enhance user interface -- GUI

u Results
• Storage may be approaching “free” on a per-bit basis,

but somehow it always seems to be full

Computer Performance
u task time =     number of instructions executed

* clocks per instruction  (CPI)
* clock period

u Number of instructions depends on ISA, language, compiler
u Overall clocks per instruction:

• Instruction complexity (usually 1 clock, but can be longer)
• Instruction issue rate (superscalar may be > 1 issue/clock)
• Data dependence & resource stalls
• *Instruction fetch latency
• *Data fetch/store latency

u Clock period
• Logic critical path (e.g., hardware multiplier) & clock distribution tree
• *First level cache cycle time

* = emphasized in this course
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Memory/CPU Speed Gap
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Why Not Just Use SRAM?
u Off-chip vs. on-chip access limitations

• Delay -- pins are (in general) slower than on-chip access
   (more recently, across-chip is slower than nearby-on-chip)

• Bandwidth -- a few hundred pins vs. thousands of traces
u Density

• e.g., 15 ns 256 MB of SRAM using 256 KB SIMMS = 1024 SIMMS
• Address/data line fan-out & chip select slowdown ~ log N
• Physical propagation delay

u Heat/power
• 1024 SIMMS @  ~1000 mW (standby for async SRAM) =>1 KW power

u Cost
• $30/SIMM (December 1996) => $30,000  (less quantity discount...)

u Slower technology tends to be more cost effective
• 60 ns 32 MB DRAM SIMM  $270  =>   8 SIMMS, $2160
• 256 MB is too small a disk to buy (about $0.32 / MB  8 ms => $82 )

COURSE SAMPLER
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There’s More to a Computer Than Just a CPU

(Messmer Figure 22.1)
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Key Concepts
u Latency -- delay

• Minimize delay to limit length of stalls waiting for data
u Bandwidth -- data moved per unit time

• Maximize data path widths & clock rates

u Concurrency -- multiple units (or pipelining to re-use a single unit)
• Adding resources can increase bandwidth
• Exploiting concurrency can reduce latency

u Balance -- avoiding performance bottlenecks
• Bottlenecks limit system performance

balanced systems have no real bottlenecks

u Memory hierarchy -- a way to balance
speed with cost by exploiting locality
(re-use/nearness) of memory accesses
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Example Memory Hierarchy
u Digital AlphaServer 4000 5/600  (Alpha 21164 CPU)

• Dual 600 MHz CPUs
– Registers
– On-chip 16 KB data cache + 16 KB instruction cache
– On-chip 96 KB level 2 cache
– Off-chip 8 MB level 3 cache

• 1024 MB main memory
• 40 GB disk storage
• Large networked file system (afs)

• Program loading device (CD ROM)
• Backup device (tape, network, WORM CD)
• Internet connection to WWW (via 100 Mb/sec switched port)

Address Space Hierarchy
u Virtual address translated to hardware address

• Physical address used if page is in main memory; disk address on page fault
• TLB (Translation Lookaside Buffer) caches address translation information
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Cache Organization
u Cache organized as sectors, blocks, and sets

• Each sector corresponds to a location in memory (tag holds address)
• Cache lookup searches set to find matching address

– Hit -- found a tag match within set -- provide fast access to data
– Miss -- didn’t find a tag match -- perform slow access to next level in hierarchy
– Miss penalty -- clock cycles to process a miss
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TAG V VD DWORD WORDWORD WORD TAG V VD DWORD WORDWORD WORD
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TAG V VD DWORD WORDWORD WORD TAG V VD DWORD WORDWORD WORD
TAG V VD DWORD WORDWORD WORD TAG V VD DWORD WORDWORD WORD
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BLOCK 0 BLOCK 1
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SET 0

SET 4

SET 1

SET 5

SET 2

SET 6
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SET 7

Major Cache Design Decisions
u Cache Size -- in bytes
u Split/Unified -- instructions and data in same cache?

u Associativity -- how many sectors in each set?
u Sector/Block size -- how many bytes grouped together as a unit?

u Management policies
• Choosing victim for replacement on cache miss
• Handling writes (when is write accomplished?; is written data cached?)

u How many levels of cache?
• Perhaps L1 cache on-chip; L2 cache on-module; L3 cache on motherboard



18-548  Course Introduction      8/26/98

14

System-Level Effects -- Context Switching
u Traditionally, cost of context switching is considered to be:

• Processing timer interrupt
• OS scheduling
• Register save
• Register restore

u But, the TRUE process state that might be lost includes:
• CPU information (branch prediction, buffers, speculative execution results)
• Cache contents
• TLB contents
• Virtual memory pages resident in memory
• Disk cache contents

u Important result: single-task simulations are typically very optimistic
compared to real-world performance

DRAM Read Cycle
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Improving Main Memory Performance
u Interleaved memory -- multiple banks for concurrent accesses

u Use exotic DRAM technology
• EDO DRAM
• SDRAM
• Cached DRAM
• Rambus
• ...

(Cragon Figure 5.1)

Optimization of Matrix Multiplication
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Generic Vector Architecture

u Vector Address Generators perform concurrent prefetches & stores
u Vector Register File holds collated data sets to feed to pipelined functional units
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Vector Computers Illustrate Performance Issues
u Code with a working set larger

than available cache will have
performance problems

u Vector computers teach us
techniques to deal with this
problem:
• Hardware prefetching of regular

data access patterns
• Techniques to segment accesses

to memory and reduce working
set to fit in available cache
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Blocked Matrix Multiply Performance
u “Blocked” algorithm uses small blocks to fit working set into cache

2D Matrix Multiply -- Alpha Workstation
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Multiprocessor Memory
u Bandwidth is an key issue
u So is ensuring coherence among shared memory locations
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u Distributed memory
• Numerous processing elements

organized as clusters
interconnected

u Centralized shared memory
• Single memory shared over

interconnect
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Important Lessons in System Architecture
u Every level of memory hierarchy employs similar principles

• Registers
• Cache
• Main memory
• Disks
• Multiprocessors

u Address translation permits automatic management of memory
• Caches
• Virtual memory
• Multiprocessing

u A balance between latency and bandwidth is crucial
u Concurrency is an effective tool for improving performance

• Replication of resources
• Pipelining of individual resources
• Prefetching and delayed storing of data

REVIEW
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Review
u CPU / memory speed gap is increasing in size

• Clock speed & superscalar CPUs require more from memory
• But, memory isn’t keeping up with the demands

u Memory hierarchies are the obvious solution
• Registers
• Cache
• Main memory
• Disks
• Multiprocessor memories

u Key concepts apply at all levels
• Latency -- delay
• Bandwidth -- data moved per unit time
• Concurrency -- multiple units (or pipelining to re-use a single unit)
• Balance -- avoiding performance bottlenecks


