
Lecture #13

Interrupts

18-348 Embedded System Engineering

Philip Koopman

Monday, 29-Feb-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Example: Electronic Parking Brake
http://www.conti-online.com/generator/www/de/en/continentalteves/continentalteves/themes/products/electronic_brake_systems/

parking_brake_1003_en.html

 “Software” parking brake
• Button on dash is a MCU input
• Lever in center is an MCU input
• Allows system to “Do The Right Thing”

– Avoid skidding or spinning
– Brake car to stop from high speed

 Possible EPB Functions:
• Normal parking brake function
• “Drive-away” automatic release on hills
• Emergency braking if primary brakes fail
• Vehicle immobilizer (car security system)

 Discussion questions:
Assume critical functionality is provided by software
• What are the worst potential hazards?
• What is a likely acceptable failure rate?
• Who is responsible for ensuring safe operation within design flow?

3

Where Are We Now?
 Where we’ve been:

• Time and counters – a bit more nitty-gritty
– Keeping track of timer rollovers was painful, wasn’t it?

– Better approach – use interrupts!

 Where we’re going today:
• Interrupts

 Where we’re going next:
• Concurrency, scheduling

• Analog and other I/O

• Test #2

4

Preview
 Really “getting” interrupts is an essential embedded system skill

• If I had to pick one job interview question to ask, this would be the topic

 Hardware interrupts
• Asynchronous, hardware-triggered cousin to SWI

 What happens in a HW interrupt?
• Trigger interrupt
• Save state
• Execute an Interrupt Service Routine
• Acknowledge the interrupt (so it doesn’t retrigger)
• Resume execution of main program

 Timer example
• Real time clock from last lecture – but done with interrupts
• Complete example in both assembler and C

 SWI as a system call

5

Polling – What We’ve Done Until Now
 Polling is periodically checking to see if something is ready

• Waiting for data ready or ready to transmit on UART

• Watching timer for rollover

• Watching for a button to be pressed

 Polling can be a pain
• Need to continually check (difficult to weave checks into complex code)

• If timing analysis is wrong,
might poll too slowly

• Can waste a lot of CPU
time checking for very
infrequent events

6

Interrupts To The Rescue
 Big idea:

Wouldn’t it be nice to be notified when something happens
(interrupted) instead of having to check continually (polling)?

 In daily life:
• Wristwatch:

– Polling is checking watch every 5 minutes to see if class is over yet

– Interrupt is having an alarm ring at end of class

• Cell phone:
– Polling is checking your phone to see if text message icon is displayed

– Interrupt is having an audible alarm (or vibration) if text message is received

• Making tea:
– Polling is checking the kettle every minute to see if it is boiling

– Interrupt is having a the tea kettle whistle

7

Remember SWI?

Jump to a predefined address

Subroutine call plus
automatic push of Y, X, D,
CCR

8

SWI Is A “Software Interrupt”
 Sort of like a subroutine call (JSR), but with some differences

 Interrupts flow of program control
• Jumps to a location specified by a “vector” instead of an address in the

instruction
– That makes it an Inherent operand (“INH”) – the address is not in the instruction
– We’ll get back to the idea of a vector shortly

• Always the same address for any SWI invocation, regardless of how many

 Saves state
• Pushes the programmer visible register state on the stack
• Including the condition code register
• As long as SWI-processing routine doesn’t mess with stack or memory, return

from SWI leaves CPU in exactly the same state as before the SWI
(see the RTI instruction)

 RTI is like RTS
• BUT with differences to corresponding to SWI placement of stack items

[Valvano]

10
• Inverse operation of SWI – puts everything back on the stack

11

What Do We Need Beyond An SWI?
 Want to generate an interrupt based on when, not where

• SWI has to be placed as an explicit instruction at a specific location …
a synchronous interrupt – happens synchronized to program flow

• What we want are interrupts that occur without an actual instruction…
asynchronous interrupt – happens without regard to program flow

[Valvano]

12

Simplified Execution Of A Hardware Interrupt
(More concrete example with details coming soon…)
 Some piece of hardware generates an interrupt

• Not an SWI instruction – happens asynchronously with and independent from the
program execution

• So this means it can happen any time (with exceptions we’ll get to soon)
• You can think of this as hardware shoving an SWI into the instruction fetch queue …

even though the SWI wasn’t actually in memory

 CPU executes an interrupt handling process
• That interrupt causes CPU to execute a virtual interrupt opcode

(same effects of SWI, but without that instruction coming from memory)
• CPU jumps to a particular handling routine via a vector

 Interrupt handling software executes
• An Interrupt Sub-Routine (ISR) executes (subroutine to handle the interrupt)
• When completed, the ISR executes an RTI instruction

– This is a real RTI instruction, just like we saw with SWI

 Normal program resumes operation
• CPU registers unchanged – program has no idea it was interrupted

13

What Can Generate An Interrupt?
 General categories on any CPU – each has a different vector location

• Interrupt jumps to address at vector (e.g., SWI jumps to [$FFF6])

• Various types of resets

• Various types of illegal situations (e.g., undefined opcode executed)

• Hardware signals from devices

• SWI

14

More Specific Example – Time Of Day
 Remember the time of day example? (statechart in an earlier slide)

• Needed to tightly loop monitoring the TCNT value, watching for zero crossing

• Better way – use an interrupt

 Recap of program at a high level:
• TCNT is the current timer value; assume bus clock divided by 8

• Current_time is a uint32
– Add <fractional_value> to 32-bit value every TCNT rollover

– High 16 bits are current time in seconds

• Algorithm for the old approach (polled version):
for(;;)

{ <wait for TCNT roll-over (TCNT changes from $FFFF to $0000)>

timer_count += <fraction_value>;

<display (timer_count>>16) as seconds on LCD>

}

15

New Time Of Day Approach Using Interrupts
 Main program – can do anything we want

for(;;)

{ <do anything else you want; doesn’t matter how long>
<display (timer_count>>16) as seconds on LCD>

}

• But wait, what is changing the timer_count value?  The ISR Does It

 ISR – (Interrupt Service Routine) – keeps track of TCNT rollovers
• This is what is changing current_time – main loop only displays it!

• Keeps a time of day clock updated

• Executes only when TCNT rolls over

• ISR: timer_count += <fractional_value>;

<return from interrupt>

• How do we know when to executed ISR?
Ask Timer HW to generate an Interrupt!

 Following slides are how to do this step by step…

16

Timer Register Setup Info
 TEN and PR[2:0] discussed in last lecture; TOI and TFLG2 are new

17

TOF
 TOF set whenever TCNT rolls over

• If TOI is set, causes an interrupt

• KEEPS causing an interrupt until it is cleared!!

• Clear by writing a “1” bit to every flag to be cleared (i.e., write $80)
– This is because TFLG1 has multiple bits and only want to clear some/one of them

18

Timer Register Setup
 TEN – Timer enable

• Bit 7 of TSCR1 -- set to enable timer
TSCR1 |= 0x80;

 PR[2:0] – Timer prescale
• Bits 2..0 of TSCR2 set prescale – set to bus clock / 8

• From last lecture, TCNT rollover every 0.167772 seconds

 TOI
• Bit 7 of TSCR2 set to one – generates interrupt every time TCNT rolls

• TCNT rollover is caught by the TOF – Timer Overflow Flag
// TSCR2[2:0] binary 011=bus clock/8

// TSCR2[7] TOI set to interrupt on TOF (TCNT rollover)

TSCR2 = (TSCR2&0x78)|0x03|0x80;

19

Timer Main Program
volatile uint32 timer_val=0;

void main(void)

{

// set TN = 1 Timer Enable TSCR1 bit 7

TSCR1 |= 0x80;

// TSCR2[2:0] binary 011=bus clock/8

// TSCR2[7] TOI set to interrupt on TOF (TCNT rollover)

TSCR2 = (TSCR2&0x78)|0x03|0x80;

EnableInterrupts;

for(;;)

{ // code goes here to copy (timer_val>>16) to display

} /* loop forever */

}

20

What About The Interrupt?
 Need to initialize interrupt vector to point to ISR

• Usually done at load time, not run time

• For us it is in flash memory, so must be done at load time

 Need to import timer_val symbol from C code so it can be modified
• XREF timer_val (means “this is a symbol defined in another module”)

 Need to clear TOF
• Or else hardware just re-triggers ISR forever

 Need to add a fractional part to 32-bit integer time counter
• 8 MHz bus clock with divider of 8 and 64K rollover:

(8*65536) / 8,000,000 = 0.065536 / (1/65536) scale factor = 4295 = $10C6

• Add 4295 to 32-bit integer each rollover to get high 16 bits as integer seconds

 Need to RTI to restore operation after ISR executes
• Don’t use “RTS” because it doesn’t restore registers and flags!

XREF timer_val ; import symbol from C code
MyCode: SECTION
count_isr: ; this is the ISR routine

LDAA #$80 ; Clear TOF; top bit in TFLG2
STAA TFLG2 ; This acknowledges the rollover intrpt
; 32-bit add $10C6 to increment fractional second
LDAA timer_val+3 ; byte-wise 32-bit add
ADDA #$C6
STAA timer_val+3
LDAA timer_val+2
ADCA #$10
STAA timer_val+2
LDAA timer_val+1
ADCA #$00
STAA timer_val+1
LDAA timer_val ; why isn’t this a loop here?
ADCA #$00 ; (what if infinite loop here?)
STAA timer_val
RTI ; return to interrupted program

ORG $FFDE ; set interrupt vector for timer

DC.W count_isr

22

Hardware Interrupt Recap
 Some piece of hardware generates an interrupt

• Happens asynchronously with and independent from the program execution

• So this means it can happen any time (with exceptions we’ll get to soon)

 CPU executes an interrupt handling process
• That interrupt causes CPU to execute a virtual interrupt instruction

– Happens between instructions, but anywhere in program

• CPU jumps to a particular handling routine via a vector
– Something has to set that vector to point to the ISR!

 Interrupt handling software executes
• An Interrupt Sub-Routine (ISR) executes (subroutine to handle the interrupt)

– Hardware saves registers

• When completed, the ISR executes an RTI instruction
– RTI restores the registers

 Normal program resumes operation
• CPU registers unchanged – program has no idea it was interrupted

23

Leap Year Bug

24

CW C Interrupt Syntax
 You can handle interrupts in C/C++ as well!

 Syntax:
void interrupt <n> <fn>(void)

{ }

 <n> is the entry number in the interrupt vector list
• “2” is second entry, etc. -- it’s the entry number, not byte address
• Be careful, these numbers count opposite to address direction!

This is #2

25

Same Timer Example, In C
extern volatile unsigned long timer_val = 0;

void main(void)

{ // set TEN = 1 Timer Enable TSCR1 bit 7

TSCR1 = TSCR1 | 0x80;

// TSCR2[2:0] binary 0=bus clock/8

// TSCR2[7] TOI set to interrupt on TOF (TCNT rollover)

TSCR2 = (TSCR2&0x78)|0x03|0x80;

EnableInterrupts;

for(;;) {

// code goes here to copy (timer_val>>16) to display

} /* loop forever */

}

void interrupt 16 timer_handler(void) //-(16*2)-2 = $FFDE for TOI

{ TFLG2 = 0x80;

timer_val += 0x10C6;

}

26

Timer isn’t the only thing that uses interrupts
 128 interrupt

vectors
supported by
course MCU
• Most or all of

them can be
used in the
same program!

• Each vector
gets its own
ISR

• Higher vectors
get higher
priority (pick
one with
highest address
to service next)

28

For Example, The SCI/UART Does Interrupts
 Generates interrupts when you need to service the SCI

• Interrupts acknowledge (stop being asserted) when status flags reset

29

Some Notes On Saving State
 Many processors don’t automatically save state!

• For example, a RISC with 32 registers usually doesn’t save them

• It is the ISR’s responsibility to save things it changes, then restore them

 In most systems, the flags are automatically saved
• Interrupt can happen after any instruction – so need to save the flags

• What if you get an interrupt partway through a multi-precision add?

• What if you get an interrupt between a TST and BEQ?

 Tricky part – what’s up with the “I” bit?
• Part of the flag bits

• … see next slide …

30

Interrupt Masking
 When we’re in the ISR, what prevents TOF from interrupting us

again?
• Interrupt processing saves the flag registers, including old I bit

• The I bit gets set by hardware while the ISR vector is fetched, masking
interrupts (causes interrupts to be Ignored)

– No futher interrupts will be recognized in the ISR

• I bit gets restored as part of the RTI – re-enabling interrupts

31

Software Can Set / Clear The I Bit Too
 Assembly language

• SEI – set I bit to 1
– Causes interrupts to be ignored (masked)

• CLI – clear I bit to 0
– Causes interrupts to be permitted

• These are not needed within interrupts themselves
– ISRs disable/enable automatically

– But sometimes you want to disable/enable outside an ISR for some reason

 In C
• EnableInterrupts();

– Put into your main; I bit set on system reset and you need to clear it this way

• Other obtuse syntax approaches as well … see CW C references

• Chip has a few other specialized interrupt masks as well…
– But don’t worry about them for this lecture

 We’re going to see more about the I bit when we discuss concurrency

32

SWI As A System Call
 Totally different use of “interrupts” from everything else in this lecture

• So, first, any questions up to this point?

• The below technique is more common on larger systems, but still important

 Background – what does a BIOS do?
• BIOS = “Basic Input/Output Subsystem”

• Originated as a UV-EPROM on early microcomputers
– Knows how to get a keystroke input

– Knows how to write a character to the screen

– Knows how to write a sector to disk

– Keep real time clock

• In embedded, might also:
– Read/write serial port

– Read A/D; write D/A

33

Simple But Fragile System Calls
 Old way – early personal computers (for example, Apple][)

• Write BIOS in assembly language
• Record start addresses of every service routine
• JSR to the service you want (e.g., GetKey EQU $F75B

JSR GetKey)

 What if you need to change the BIOS?
• Need to preserve the entry points, but new software might be in different places
• Once you publish an entry point, you have to support it forever
• Can’t just re-compile the applications; many are distributed as binary only
• Having a jump table at start of BIOS might help a bit

– Nth jump table entry is a vector to Nth BIOS service; updated with new version

 What if you want to establish some sort of protected mode for the OS
• What if someone just JSRs to an address other than the designated service

address?
• Without protection, tasks can access any OS fragment they want

34

Using SWI As A System Call
 Solution: use SWI as a system call (or “service” call)

• Put which OS function you want in A register
• Put parameters in B, X, Y registers
• Optionally can put other parameters on stack
• IBM PC BIOS used this approach

 When you want a service, load A register and execute SWI
• e.g., LDAB OutByte ; data to send to serial port

LDAA #7 ; function 7 outputs byte to serial port
SWI ; BIOS call = send data byte in B to serial port

 Advantages to SWI
• SWI handler knows where services start

– Can change entry points with ease when recompiling the BIOS

• One place to handle all service calls
– CPU can change protection modes when it executes SWI

• Easier to protect BIOS code from malicious execution
– Use memory management unit to block JSRs into BIOS

• (Some CPUs don’t push all registers on interrupt, so can be very fast as well)

35

Review
 Really “getting” interrupts is an essential embedded system skill
 Hardware interrupts

• Asynchronous, hardware-triggered cousin to SWI

 What happens in a HW interrupt? (at a detailed level)
• Trigger interrupt and set I bit
• Save state
• Execute an Interrupt Service Routine specified by a vector
• Acknowledge or otherwise clear the interrupt (so it doesn’t retrigger)
• Take care of any action needed (execute body of ISR)
• Clear I bit and resume execution of main program

 Timer example
• Real time clock from last lecture – but done with interrupts
• Complete example in both assembler and C – what do they do; how do they

work?

 Basic idea of SWI as a service call

