Lecture #13

Interrupts

18-348 Embedded System Engineering
Philip Koopman
Monday, 29-Feb-2016

(() Electrical &Com%ter C arne gi e

© COpyrightEOOIG\ZIo%P!\iDIKoEomean All !¢i|g>|ts E;jserved ME]]OH

Example: Electronic Parking Brake

http://www.conti-online.com/generator/www/de/en/continentalteves/continentalteves/themes/products/electronic_brake_systems/
parking_brake_1003_en.html

¢ “Software” parking brake
< Button on dash is a MCU input
e Leverin center is an MCU input
e Allows system to “Do The Right Thing”
— Avoid skidding or spinning
— Brake car to stop from high speed

¢ Possible EPB Functions:
« Normal parking brake function
« “Drive-away” automatic release on hills
« Emergency braking if primary brakes fail
« Vehicle immobilizer (car security system)

¢ Discussion questions:
Assume critical functionality is provided by software
« What are the worst potential hazards?
e What is a likely acceptable failure rate?
« Who is responsible for ensuring safe operation within design flow?

Where Are We Now?

¢ Where we’ve been:

« Time and counters — a bit more nitty-gritty
— Keeping track of timer rollovers was painful, wasn’t it?
— Better approach — use interrupts!

¢ Where we’re going today:
* Interrupts

¢ Where we’re going next:
« Concurrency, scheduling
¢ Analog and other 1/0
o Test#2

Preview

¢ Really “getting” interrupts is an essential embedded system skill
« If I had to pick one job interview question to ask, this would be the topic

¢ Hardware interrupts
¢ Asynchronous, hardware-triggered cousin to SWI

¢ What happens in a HW interrupt?
« Trigger interrupt
» Save state
« Execute an Interrupt Service Routine
« Acknowledge the interrupt (so it doesn’t retrigger)
* Resume execution of main program

¢ Timer example
« Real time clock from last lecture — but done with interrupts
e Complete example in both assembler and C

¢ SWI as a system call

Polling — What We’ve Done Until Now

+ Polling is periodically checking to see if something is ready
« Waiting for data ready or ready to transmit on UART
« Watching timer for rollover
« Watching for a button to be pressed

¢ Polling can be a pain
* Need to continually check (difficult to weave checks into complex code)
 If timing analysis is wrong,
might poll too slowly Top St
» Can waste a lot of CPU

time checking for very
infrequent events

Top Bit of
TCNT =0

TCNT
High Bit
SET

TCNT
High Bit
CLEAR

Top Bit of
TCNT =0

Interrupts To The Rescue

¢ Bigidea:
Wouldn’t it be nice to be notified when something happens
(interrupted) instead of having to check continually (polling)?

¢ In daily life:
¢ Wristwatch:

— Polling is checking watch every 5 minutes to see if class is over yet
— Interrupt is having an alarm ring at end of class

e Cell phone:
— Polling is checking your phone to see if text message icon is displayed
— Interrupt is having an audible alarm (or vibration) if text message is received

¢ Making tea:
— Polling is checking the kettle every minute to see if it is boiling
— Interrupt is having a the tea kettle whistle

Remember SWI?

SWI Software Interrupt SWI

Opetation:

(SP) — $0002 = SP; RTNyy: AT, = (Mgp; : Misp, 1) i

(SF) 30003 = SP. st o (Mo o Subroutl_ne call plus

(SP) - $0002 = SP; Xy : X, = (Mgp) : Migpy) automatic push of Y, X, D,

(SP) - 30002 = SP; B : A= (Msp, : Mgp, 1)) CCR

(SP) - $0001 = SP; CCR = (M gp))

1=

(SWI Vector) = PC Jump to a predefined address
Descrlption:

Causes an interrupt without an external interrupt service request. Uses the address of the next
instruction after SWI as a return address. Stacks the return address, index registers Y and X,
accumulators B and A, and the CCR, decrementing the SP before each item is stacked. The |
mask bit is then set, the PC is loaded with the SWI vector, and instruction execution resumes at
that location. SWI is not affected by the | mask bit. Refer to Chapter 7 Exception Processing for
more information.

CCR Detalls: s X H I N Z2 V C

SWI Is A “Software Interrupt”

+ Sort of like a subroutine call (JSR), but with some differences

¢ Interrupts flow of program control
« Jumps to a location specified by a “vector” instead of an address in the
instruction
— That makes it an Inherent operand (“INH”) — the address is not in the instruction
— We’ll get back to the idea of a vector shortly
¢ Always the same address for any SWI invocation, regardless of how many

¢ Saves state
» Pushes the programmer visible register state on the stack
« Including the condition code register

« As long as SWI-processing routine doesn’t mess with stack or memory, return
from SWI leaves CPU in exactly the same state as before the SWI
(see the RTI instruction)

¢ RTlislike RTS
< BUT with differences to corresponding to SWI placement of stack items

Before the interrupt After the interrupt
Main Main
PC—- -t SP—>["OIdCC | T,
Ol g P
Old A
Old X
oldy
- Old PC
Handler | SP — Top | |PC—=| Handler
RTI RTI
Figure 4.19
6812 stack before and after an interrupt .
P Table 7-2. Stacking Order on Entry to Interrupts
Memory Location CPU Registers
SP+7 RTNy;: RTN,
SP+5 YR YL
SP+3 Xu: XL
SP+1 B:A
SP CCR
[Valvano]

RTI Return from Interrupt RTI

Operation:
(M(sp)) = CCR; (SP) + $0001 = SP
(M(SP (SP-H)) =B: A (SP) + $0002 = SP
(M(SP) M(SPM)) = XH XL: (SP) + $0004 = SP
((SP) M(SP-H)) = PCH PCL, (SP) $0002 = SP
(M(SP (SP+1)) = YH i YL; (SP) + $0004 = SP

Description:

Restores system context after interrupt service processing is completed. The condition codes,
accumulators B and A, index register X, the PC, and index register Y are restored to a state pulled
from the stack. The X mask bit may be cleared as a result of an RTl instruction, but cannot be set
if it was cleared prior to execution of the RTl instruction.

If another interrupt is pending when RTI has finished restoring registers from the stack, the SP is
adjusted to preserve stack content, and the new vector is fetched. This operation is functionally
identical to the same operation in the M68HC 11, where registers actually are re-stacked, but is

faster.

CCR Details: S X H I N Z V ¢
[a]8]afafafafa]a]

* Inverse operation of SWI — puts everything back on the stack

10

What Do We Need Beyond An SWI?

¢ Want to generate an interrupt based on when, not where

* SWI has to be placed as an explicit instruction at a specific location ...
a synchronous interrupt — happens synchronized to program flow

« What we want are interrupts that occur without an actual instruction...
asynchronous interrupt — happens without regard to program flow

Figure 4.3
An interrupt causes the Hardware < Busy Done Busy

main thread to be
suspended, and the

interrupt thread is run. Hardware
needs

service
Main
thread
Saves

execution
state

Restores
execution
Interrupt state
thread

ISR — Time

[Valvano] provides
service

11

Simplified Execution Of A Hardware Interrupt

(More concrete example with details coming soon...)

¢ Some piece of hardware generates an interrupt

* Not an SWI instruction — happens asynchronously with and independent from the
program execution

« So this means it can happen any time (with exceptions we’ll get to soon)

« You can think of this as hardware shoving an SWI into the instruction fetch queue ...

even though the SWI wasn’t actually in memory

¢ CPU executes an interrupt handling process

« That interrupt causes CPU to execute a virtual interrupt opcode
(same effects of SWI, but without that instruction coming from memory)

e CPU jumps to a particular handling routine via a vector

< Interrupt handling software executes
« An Interrupt Sub-Routine (ISR) executes (subroutine to handle the interrupt)
« When completed, the ISR executes an RTI instruction
— This is areal RTI instruction, just like we saw with SWI

¢ Normal program resumes operation
« CPU registers unchanged — program has no idea it was interrupted

12

What Can Generate An Interrupt?

¢ General categories on any CPU — each has a different vector location
« Interrupt jumps to address at vector (e.g., SWI jumps to [$FFF6])
« Various types of resets
« Various types of illegal situations (e.g., undefined opcode executed)
« Hardware signals from devices

e SWI Table 7-1. CPU12 Exception Vector Map
Vector Address Source
$FFFE-$FFFF System Reset
$FFFC—$FFFD Clock Monitor Resst
$FFFA-$FFFB COP Reset
$FFF8—$FFF9 Unimplemented Opcode Trap
$FFF6-$FFF7 Software Interrupt Instruction (SWI)
$FFF4-$FFF5 XIRQ Signal
$FFF2-$FFF3 1RQ Signal
$FFO0-$FFF1 Device-Specific Interrupt Sources (HCS12)
$FFCO-$FFF1 Device-Specific Interrupt Sources (MB8HC12)
| e mmem L R |
0xFFDE, 0xFFDF Standard timer overflow | I bit | TMSK2 (TOI) |

13

More Specific Example — Time Of Day

¢ Remember the time of day example? (statechart in an earlier slide)
« Needed to tightly loop monitoring the TCNT value, watching for zero crossing
 Better way — use an interrupt

¢ Recap of program at a high level:
e TCNT is the current timer value; assume bus clock divided by 8
e Current_time is a uint32
— Add <fractional_value> to 32-bit value every TCNT rollover
— High 16 bits are current time in seconds

¢ Algorithm for the old approach (polled version):
for(::)
{ <wait for TCNT roll-over (TCNT changes from $FFFF to $0000)>
timer_count += <fraction_value>;
<display (timer_count>>16) as seconds on LCD>

}

14

New Time Of Day Approach Using Interrupts

¢ Main program — can do anything we want
for(;;)
{ <do anything else you want; doesn’t matter how long>
<display (timer_count>>16) as seconds on LCD>

}
« But wait, what is changing the timer_count value? =» The ISR Does It

¢ ISR - (Interrupt Service Routine) — keeps track of TCNT rollovers
e This is what is changing current_time — main loop only displays it!
« Keeps a time of day clock updated
« Executes only when TCNT rolls over
¢ ISR: timer_count += <fractional_value>;
<return from interrupt>

¢ How do we know when to executed ISR?
Ask Timer HW to generate an Interrupt!

¢ Following slides are how to do this step by step...

15

Timer Register Setup Info

¢ TEN and PRJ[2:0] discussed in last lecture; TOIl and TFLG2 are new

o — |
TOI - - TCRE PRZ PRI PRO
RAesel [}) 0 o 0 [o) 0) o)]
Unimplemented or Resarved
Flgure 15-14. Timer System Control Register 2 (TSCR2)
Field Description
7 Timer Overflow Interrupt Enable
TOI 0 Interrupt inhibited.
1 Hardware interrupt requested when TOF flag set. ’
PR2 PR1 PRO Timer Clock
0 0 0 Bus Clock / 1
0 0 1 Bus Clock / 2
0 1 0 Bus Clock / 4
4] 1 1 Bus Clock / 8
1 0 0 Bus Clock / 16
1 0 1 Bus Clock / 32
1 1 0 Bus Clock / 64
1 1 1 Bus Clock / 128

16

TOF

¢ TOF set whenever TCNT rolls over
e If TOI is set, causes an interrupt
e KEEPS causing an interrupt until it is cleared!!
 Clear by writing a “1” bit to every flag to be cleared (i.e., write $80)
— This is because TFLG1 has multiple bits and only want to clear some/one of them

7 [5 4 3 2 1 0
R 0 0 0 0 0 0 0
TOF
w
Reset 0 0 0 0 0 0 0 0

I:lummplemented or Reserved

Figure 15-21. Main Timer Interrupt Flag 2 (TFLG2)

TFLG2 indicates when interrupt conditions have occurred. To clear a bit in the flag register, write the bit
to one.

Read: Anytime
Write: Used in clearing mechanism (set bits cause corresponding bits to be cleared). ’

Any access to TCNT will clear TFLG2 register if the TFFCA bit in TSCR register is set.
Table 15-16. TRLG2 Field Descriptions

Field Description

7 Timer Overflow Flag — Set when 16-bit free-running timer overflows from 0xFFFF to 0x0000. This bit is cleared
TOF automatically by a write to the TFLG2 register with bit 7 set. (See also TCRE control bit explanation.)

17

Timer Register Setup

¢ TEN - Timer enable
¢ Bit7 of TSCR1 -- set to enable timer
TSCR1 |= 0x80;

¢ PR[2:0] - Timer prescale
¢ Bits 2..0 of TSCR2 set prescale — set to bus clock / 8
e From last lecture, TCNT rollover every 0.167772 seconds

¢ TOI
e Bit 7 of TSCR2 set to one — generates interrupt every time TCNT rolls
e TCNT rollover is caught by the TOF — Timer Overflow Flag
// TSCR2[2:0] binary 011=bus clock/8
// TSCR2[7] TOl set to interrupt on TOF (TCNT rollover)
TSCR2 = (TSCR2&0x78) |0x03]0x80;

18

Timer Main Program

volatile uint32 timer_val=0;

void main(void)

{

// set TN = 1 Timer Enable TSCR1 bit 7
TSCR1 |= 0x80;

// TSCR2[2:0] binary 011=bus clock/8
// TSCR2[7] TOIl set to interrupt on TOF (TCNT rollover)
TSCR2 = (TSCR2&0x78)]0x03]0x80;

Enablelnterrupts;

for(;:)

{ // code goes here to copy (timer_val>>16) to display
} /7* loop forever */

}

19

What About The Interrupt?

¢ Need to initialize interrupt vector to point to ISR
e Usually done at load time, not run time
e For us itis in flash memory, so must be done at load time

¢ Need to import timer_val symbol from C code so it can be modified
e XREFtimer_val (means “this is a symbol defined in another module™)

¢ Need to clear TOF
< Or else hardware just re-triggers ISR forever

¢ Need to add a fractional part to 32-bit integer time counter

¢ 8 MHz bus clock with divider of 8 and 64K rollover:
(8*65536) / 8,000,000 = 0.065536 / (1/65536) scale factor = 4295 = $10C6

e Add 4295 to 32-bit integer each rollover to get high 16 bits as integer seconds

¢ Need to RTI to restore operation after ISR executes
e Don’tuse “RTS” because it doesn’t restore registers and flags!

20

XREF timer_val ; import symbol from C code
MyCode: SECTION
count_isr: ; this is the ISR routine

LDAA #$80 ; Clear TOF; top bit in TFLG2

STAA TFLG2 ; This acknowledges the rollover intrpt

; 32-bit add $10C6 to increment fractional second

LDAA timer_val+3 ; byte-wise 32-bit add

ADDA #$C6

STAA timer_val+3

LDAA timer_val+2

ADCA #%$10

STAA timer_val+2

LDAA timer_val+1l

ADCA #$00
STAA timer_val+1
LDAA timer_val ; why isn’t this a loop here?
ADCA #$00 ; (what if infinite loop here?)
STAA timer_val
RTI ; return to interrupted program

ORG $FFDE ; set interrupt vector for timer

DC.W count_isr

Hardware Interrupt Recap

¢ Some piece of hardware generates an interrupt
< Happens asynchronously with and independent from the program execution
< So this means it can happen any time (with exceptions we’ll get to soon)
¢ CPU executes an interrupt handling process
< That interrupt causes CPU to execute a virtual interrupt instruction
— Happens between instructions, but anywhere in program
e CPU jumps to a particular handling routine via a vector
— Something has to set that vector to point to the ISR!
< Interrupt handling software executes
< An Interrupt Sub-Routine (ISR) executes (subroutine to handle the interrupt)
— Hardware saves registers
« When completed, the ISR executes an RTI instruction
— RTI restores the registers
¢ Normal program resumes operation
e CPU registers unchanged — program has no idea it was interrupted

22

“Netrino ?

Leap Year Bug
Bad Code in the Microsoft Zune

1 vyear = 1980:;

2 while (days > 365) {

3 if (IsLeapYear(year)) {
4 if (days > 366) {

5 days -= 366;

6 year++;

1

8

}
) w
9 else { C ole

10 days -= 365;
11 year++;

IS ran in an ISR, WRICh "DricKkea € Lunec unti arscharged.

This Code Stinks! | Sepiember 22, 2009

CW C Interrupt Syntax

¢ You can handle interrupts in C/C++ as well!

¢ Syntax:
void interrupt <n> <fn>(void)
{ } vold interrupt 0 ResetFunction(wvoid) {

/* reset handler */

}

¢ <n> isthe entry number in the interrupt vector list
e “2”issecond entry, etc. -- it’s the entry number, not byte address
« Be careful, these numbers count opposite to address direction!

Vector Number Vector Address Vector Address Size
0 0XFFFE, 0XFFFF 2
1 0xFFFC, 0xFFFD 2
-2 This is #2 OXFFFA, OXFFFB 2
n OXFFFF - (n*2) 2
24

Same Timer Example, In C

extern volatile unsigned long timer_val = O;

void main(void)
{7/ set TEN =1 Timer Enable TSCR1l bit 7
TSCR1 = TSCR1 | 0x80;
// TSCR2[2:0] binary O=bus clock/8
// TSCR2[7] TOl set to interrupt on TOF (TCNT rollover)
TSCR2 = (TSCR2&0x78)]0x03]0x80;
Enablelnterrupts;
for(;:) {
// code goes here to copy (timer_val>>16) to display
} /7* loop forever */

}

void interrupt 16 timer_handler(void) //-(16*2)-2 = $FFDE for TOI
{ TFLG2 = 0x80;
timer_val += 0x10C6;

25
- - y - -
Timer isn’t the only thing that uses interrupts
. Table 1-9. Interrupt Vector Locations
¢ 128 interrupt
VeCtO rs Vector Address Interrupt Source ﬁ:g(Local Enable
suppo rted by External reset, power on reset,
OXFFFE, OXFFFF or low voltage reset None None
course MCU g (see CRG flags register to determine
reset source)

* Most or all of 0xFFFC, OXFFFD Clock monitor fail reset None COPCTL (CME, FCME
them can be I OxFFFA, OxFFFB COP failure reset None COP rate select
used in the 0xFFF8, 0xFFF9 Unimplemented instruction trap None None
same program! | oxFrFe, oxFFF7 SWI None None |

’ OxFFF4, OxFFF5 XIRQ X-Bit None

® EaCh VECtor OxFFF2, OxFFF3 IRQ | bit INTCR (IRQEN)
gets Its own OxXFFFO, OxFFF1 Real time Interrupt I bit CRGINT (RTIE)
|SR OxFFEE, OxFFEF Standard timer channel 0 | bit TIE (CO1)

- 0xFFEC, OxFFED Standard timer channel 1 I bit TIE (C1l)
 Higher vectors
tgh h 0xFFEA, 0xFFEB Standard timer channel 2 I bit TIE (C2I)
ge_ Ig er_ 0xFFES8, 0xFFES Standard timer channel 3 | bit TIE (C3l)
p”o”ty (pICK 0OxFFEB, OXxFFE7 Standard timer channel 4 I bit TIE (C4l)
one with OxFFE4, 0xFFE5 Standard timer channel 5 1 bit TIE (C51)
highest address OxFFE2, 0xFFE3 Standard timer channel 6 I bit TIE (C8l)
to Service next) 0xFFEO, 0xFFE1 Standard timer channel 7 | bit TIE (C71)
| OxFFDE, OxFFDF Standard timer overflow | bit TMSK2 (TOI) |
0xFFDC, OxFFDD Pulse accumulator A overflow | bit PACTL (PAQVI)

Vector Address Interrupt Source I\cfiaCsF:(Local Enable
0xFFDA, OxFFDB Pulse accumulator input edge | bit PACTL (PAI)
0xFFD8, OxFFD9 SPI | bit SPICR1 (SPIE, SPTIE)
0xFFD8, 0xFFD7 SCl I bit (TIE. T?Z(I:EICEIZE ILIE)
0xFFD4, 0xFFD5 Reserved

OxFFD2, OxFFD3 ATD ‘ 1 bit ‘ ATDCTL2 (ASCIE)
0xFFDO, 0xFFD1 Reserved

OxFFCE, OxFFCF Port J } | bit ‘ PIEP (PIEP7-6)
0xFFCC, OxFFCD Reserved

0xFFCA, OxFFCB Reserved

0xFFC8, OxFFC@ Reserved

OxFFCB, OXxFFC7 CRG PLL lock | bit PLLCR (LOCKIE)
O0xFFC4, 0xFFC5 CRG self clock mode | bit PLLCR (SCMIE)
OxFFBA to OXFFC3 Reserved

0xFFB8, 0OxFFB9 FLASH 1 bit FCNFG (CCIE, CBEIE)
OxFFBS6, 0xFFB7 CAN wake-up!" 1 bit CANRIER (WUPIE)
0xFFB4, 0xFFB5 CAN errors’ | bit CANRIER (CSCIE, OVRIE)
0xFFB2, 0xFFB3 CAN receive' | bit CANRIER (RXFIE)
0xFFBO, 0xFFB1 CAN transmit! 1 bit CANTIER (TXEIE[2:0])
O0xFF90 to OxFFAF Reserved

OxFF8E, OxFF8F Port P 1 bit PIEP (PIEP7-0)
0xFF8C, OxFF8D PWM Emergency Shutdown | bit PWMSDN(PWMIE)
0xFF8A, OXFF8B VREG LVI 1 bit CTRLO (LVIE)
0xFF80 to OXFF89 Reserved

For Example, The SCI/UART Does Interrupts

¢ Generates interrupts when you need to service the SCI
« Interrupts acknowledge (stop being asserted) when status flags reset

T & 5 4 3 2 1 o
:| TE TCIE RIE ILIE TE RE R SBK
|
Reset 0 0 0 0 0 0 0 0
Figure 13-5, SCI Control Register 2 (SCICRZ)
Table 13-4. SCICR2 Field Descriptions
Field Description
7 Transmitter Interrupt Enable Bit — TIE enables the transmit data register empty flag, TDRE, to generate
TIE interrupt requests.
0 TDRE interrupt requests disabled
1 TDRE interrupt requests enabled
6 Transmission Complete Interrupt Enable Bit — TCIE enables the transmission complete flag, TC, to generate
TCIE interrupt requests.
0 TC interrupt requests disabled
1 TC interrupt requests enabled
5 Receiver Full Interrupt Enable Bit — RIE enables the receive data register full flag. RDRF, or the overrun flag.
RIE OR, to generate interrupt requests.
0 RDRF and OR interrupt requests disabled \
1 RDRF and OR interrupt requests enabled

28

Some Notes On Saving State

¢ Many processors don’t automatically save state!
« For example, a RISC with 32 registers usually doesn’t save them
 Itis the ISR’s responsibility to save things it changes, then restore them

¢ In most systems, the flags are automatically saved
« Interrupt can happen after any instruction — so need to save the flags
« What if you get an interrupt partway through a multi-precision add?
* What if you get an interrupt between a TST and BEQ?

¢ Tricky part — what’s up with the “I”” bit?
 Part of the flag bits

e ...seenextslide ...

29

Interrupt Masking

¢ When we’re in the ISR, what prevents TOF from interrupting us
again?
« Interrupt processing saves the flag registers, including old I bit

e The | bit gets set by hardware while the ISR vector is fetched, masking
interrupts (causes interrupts to be Ignored)
— No futher interrupts will be recognized in the ISR

« | bit gets restored as part of the RTI — re-enabling interrupts

2.2.5.4 1 Mask Bit

The | bit enables and disables maskable interrupt sources. By default, the | bit is set to 1 during reset. An
instruction must clear the | bit to enable maskable interrupts. While the | bit is set, maskable interrupts can
become pending and are remembered, but operation continues uninterrupted until the | bit is cleared.

When an interrupt occurs after interrupts are enabled, the | bit is automatically set to prevent other
maskable interrupts during the interrupt service routine. The | bit is set after the registers are stacked, but
before the first instruction in the interrupt service routine is executed.

Normally, an RTl instruction at the end of the interrupt service routine restores register values that were
present before the interrupt occurred. Since the CCR is stacked before the | bit is set, the RTI normally
clears the | bit, and thus re-enables interrupts. Interrupts can be re-enabled by clearing the | bit within the
service routine, butimplementing a nested interrupt management scheme requires great care and seldom
improves system performance.

30

Software Can Set/ Clear The | Bit Too

¢ Assembly language
e SEl-setlbittol
— Causes interrupts to be ignored (masked)
e CLI-clearlbitto0
— Causes interrupts to be permitted
¢ These are not needed within interrupts themselves
— ISRs disable/enable automatically
— But sometimes you want to disable/enable outside an ISR for some reason
¢ InC
« Enablelnterrupts();
— Put into your main; | bit set on system reset and you need to clear it this way
« Other obtuse syntax approaches as well ... see CW C references
« Chip has a few other specialized interrupt masks as well...
— But don’t worry about them for this lecture

¢ We’re going to see more about the | bit when we discuss concurrency

31

SWI As A System Call

¢ Totally different use of “interrupts” from everything else in this lecture
e So, first, any questions up to this point?
¢ The below technique is more common on larger systems, but still important

¢ Background — what does a BIOS do?
e BIOS = “Basic Input/Output Subsystem”
e Originated as a UV-EPROM on early microcomputers
Knows how to get a keystroke input
Knows how to write a character to the screen
Knows how to write a sector to disk
Keep real time clock

¢ In embedded, might also:
— Read/write serial port
— Read A/D; write D/A

32

Simple But Fragile System Calls

¢ Old way - early personal computers (for example, Apple][)
e Write BIOS in assembly language
« Record start addresses of every service routine

¢ JSR to the service you want (e.g., GetKey EQU $F75B
JSR GetKey)

¢ What if you need to change the BIOS?
* Need to preserve the entry points, but new software might be in different places
« Once you publish an entry point, you have to support it forever
« Can’tjust re-compile the applications; many are distributed as binary only
e Having a jump table at start of BIOS might help a bit
— Nth jump table entry is a vector to Nth BIOS service; updated with new version

¢ What if you want to establish some sort of protected mode for the OS

* What if someone just JSRs to an address other than the designated service
address?

« Without protection, tasks can access any OS fragment they want

33

Using SWI As A System Call

¢ Solution: use SWI as a system call (or “service” call)
¢ Put which OS function you want in A register
e Put parameters in B, X, Y registers
« Optionally can put other parameters on stack
* IBM PC BIOS used this approach

¢ When you want a service, load A register and execute SWI

e e.g, LDAB OutByte ; datato send to serial port
LDAA #7 ; function 7 outputs byte to serial port
SwWi ; BIOS call = send data byte in B to serial port

¢ Advantages to SWI
« SWI handler knows where services start
— Can change entry points with ease when recompiling the BIOS
¢ One place to handle all service calls
— CPU can change protection modes when it executes SWI
« Easier to protect BIOS code from malicious execution
— Use memory management unit to block JSRs into BIOS
« (Some CPUs don’t push all registers on interrupt, so can be very fast as well) s

Review

¢ Really “getting” interrupts is an essential embedded system skill
¢ Hardware interrupts
e Asynchronous, hardware-triggered cousin to SWI

¢ What happens in a HW interrupt? (at a detailed level)
« Trigger interrupt and set I bit
e Save state
« Execute an Interrupt Service Routine specified by a vector
« Acknowledge or otherwise clear the interrupt (so it doesn’t retrigger)
« Take care of any action needed (execute body of ISR)
¢ Clear I bit and resume execution of main program

¢ Timer example
« Real time clock from last lecture — but done with interrupts

¢ Complete example in both assembler and C — what do they do; how do they
work?

& Basic idea of SWI as a service call

35

