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ABSTRACT

Computers are becoming essential to everyday life in
modern society, but are not necessarily as dependable as one
would like, especially with respect to software robustness.
Cost and time constraints often limit testing to the important
area of functional correctness, but leave few resources to
determine a software system’s robustness in the face of
exceptional conditions. This paper describes the Ballista
Project — a methodology and Web server that remotely test
software modules in linkable object code form. By focusing
on module interfaces rather than functional specifications,
we have been able to build a scalable robustness evaluation
framework having a test development cost sub-linear with
respect to the number of modules to be tested. A client-
server framework exercises the module under test on the
developer’s computer. The Ballista server remotely directs
testing, eliminating the need to port server or application
code, and maintaining confidentiality of the source code
under test. Stand-alone tests to replicate failures are
generated and viewed on the World Wide Web. The Ballista
server can be used to create or augment test suites, and to
collect data to better understand the exceptional conditions
that induce software robustness failures.
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1 INTRODUCTION

Although computing systems continue to take on
increasingly important roles in everyday life, the
dependability of these systems with respect to software
robustness may not be as high as one would like. The
disruption of communications services or a business server
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can cause substantial problems for both the service provider
and the consumer dependant on the service. Personal
computer users have become inured to crashes of popular
desktop computer software. But, these same people are
notoriously unsympathetic when faced with computer
problems that disrupt services in their daily lives.

Software robustness failures and exceptional conditions are
not a new problem. An early, highly visible, software
robustness failure in a critical system came in the Apollo
Lunar Landing Program despite the ample resources used for
engineering, development and test. In 1969, during powered
lunar descent, the Apollo Eleven Lunar Module experienced
three computer crashes and reboots due to exceptional sensor
and equipment settings.[15]

More recent software development methodologies for
critical systems (e.g., [23]) have given engineers the ability
to create highly robust systems such as jet engine controllers.
But, cost cutting, time pressure, and other real-world
constraints on even critical systems can lead to less than
perfectly robust software systems. One of the more
spectacular recent instances of this was the maiden flight of
the Ariane 5 heavy lift rocket. Shortly after liftoff the rocket
and payload were lost due to a failure originating from an
unhandled exceptional condition during a conversion from a
floating point value to an integer value.[19] It stands to
reason that everyday projects with lower perceived criticality
and budget size are likely to be even more suceptible to
robustness problems.

As illustrated by the space flight examples above and most
people’s daily experience with personal computer software,
all too often the response to exceptional conditions is less
than graceful. Frequently the focus of software development
processes is either that a given input is exceptional and that it
should not have been encountered, or that the lack of a
specification for that input was a defect in the requirements.
But, from a user’s perspective, a failure to handle an
exceptional condition gracefully amounts to a software
failure even if it is not strictly speaking caused by a software
defect (it is irrelevant to laypeople that software
development documents leave responses to a particular
exceptional condition “unspecified” if they have lost
anything from an hour’s work to a family member due to a
software crash).



History and commonsense tell us that specifications are
unlikely to address every possible exceptional condition.
Consequently, implementations developed by typical
software development teams are probably not entirely
robust. And, in the world of commercial software, it is even
more likely that resource and time constraints will leave gaps
where even exceptional conditions that might have been
anticipated will be overlooked or left unchecked. As a
simple example, consider an ASCII to integer conversion
inadvertantly fed a null string pointer expressed by the C call
atoi (NULL). As one might expect, on most systems this
call causes a segmentation fault and aborts the process. Of
course one would not expect programmers to deliberately
write “atoi (NULL).” But it is possible that a pointer
returned from a user input routine purchased as part of a
component library could generate a NULL pointer value, and
that pointer could be passed to atoi () during some
exceptional condition — perhaps not documented anywhere
(just to pick an example, let’s say that this happens if the user
presses backspace and then carriage return, but that isn’t in
anyone’s test set). Should atoi () abort the program in this
case? Should the application programmer check the input to
atoi () even though there is no specified case from the
input routine component that could generate a null pointer?
Or should atoi () react gracefully and generate an error
return code so that the application program can check to see
if the conversion to integer was performed properly and take
corrective action? While it is easy to say such a problem
could be handled by a bug patch, a lack of robustness in even
so simple a case could cause problems ranging from the
expense of distributing the patch to embarassment, loss of
customers, or worse.
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Resource and time constraints too often allow thorough
testing of only the functional aspects of a software system.
Functional testing is often the easiest testing expense to
justify as well. After all, it is easy to conjure visions of
unhappy customers and poor sales to even the most budget-
conscious cost cutter if a product fails to perform advertised
functions.  However, development methodologies, test
methodologies, and software metrics typically give short
shrift to the issue of robustness. In particular, there has been
to date no comprehensive way to quantify robustness, so it is
difficult to measure the effects of spending money to
improve it.  Furthermore, exceptional conditions are
typically infrequent, so it is difficult to justify spending
resources on dealing with them. (However, it is a mistake to
think that infrequent or exceptional necessarily equates to
unlikely, as can be demonstrated by year values rolling from
1999 to 2000 with two-digit year data fields; this is
infrequent, but certain to happen.)

While robustness may not be an important issue in every
software system, those systems which require software
robustness can pose special difficulties during testing. In a
“robust” software system it is typical for up to 70% of the
code to exist for the purpose of dealing with exceptions and
exceptional conditions.[10] Unsurprisingly in light of this,
other sources state that mature test suites may contain 4 to 5
times more test cases designed to test responses to invalid

conditions and inputs (“Dirty” tests) than those designed to
test functionality (“Clean” tests).[2] In short, writing robust
code and testing for robustness are both likely to be difficult,
time consuming, and expensive. Given that the bulk of
development effort in such situations is spent on exceptions
rather than “normal” functionality, it would seem useful to
have tools to support or evaluate the effectiveness of
exception handling code.

Other problems arise when attempting to use off-the-shelf
software components. It may be difficult to evaluate the
robustness of software without access to complete
development process documentation (or in some cases
lacking even source code!). Yet if robustness matters for an
application, it would seem that robustness evaluations would
be useful in selecting and using a component library.
Evaluations would be even more useful if they were
performed in a way that permitted “apples-to-apples”
comparisons across the same or similar component libraries
from multiple vendors.

The Ballista approach to robustness testing discussed in this
paper provides an automated, scaleable testing framework
that quantifies the robustness of software modules with
respect to their response to exceptional input values. It
generates specific test cases that deterministically reproduce
individual robustness failures found during testing in order
to help developers pin down robustness problems.
Additionally, it has been used to compare off-the-shelf
software components by measuring the robustness of fifteen
different implementations of the POSIX operating system
Application Programming Interface (API).

The Ballista methodology uses a portable testing client
which can be downloaded and run on a developer’s machine
along with the module under test. The client connects to the
Ballista testing service running on a server at Carnegie
Mellon, which directs the client’s testing of the module
under test. This service allows software modules to be
automatically and rapidly tested or characterized for
robustness failures with a low cost for test development.

2 PREVIOUS WORK

The Ballista testing framework described here is based on
several generations of previous work in both the software
testing and fault tolerance communities. The Crashme
program and the University of Wisconsin Fuzz project both
represent work on automated robustness testing. Crashme
writes random data values to memory and attempts to
execute them as code by spawning a large number of
concurrent processes[6]. The Fuzz project injects random
noise (or “fuzz”) into specific elements of an OS
interface[20]. Both methods have found robustness problems
in operating systems, although they are not specifically
designed for a high degree of repeatability.

Approaches to robustness testing in the fault tolerance
community are usually based on fault injection techniques,
and include Fiat, FTAPE, and Ferrari. The Fiat system



modifies the binary image of a process in memory[l].
Ferrari, on the other hand, uses software traps to simulate
specific hardware level faults, such as errors in data or
address lines. [16] FTAPE uses hardware-dependent device
drivers to inject faults into a system running with a random
load generator. [26] These approaches produced useful
results, but were not intended to provide a scalable, portable
quantification of robustness for software modules.

Typical software testing approaches are only suitable for
evaluating robustness when robustness is included as an
explicit and detailed requirement reflected in specifications.
When comprehensive exceptional condition tests appear in
code traceable back to requirements, regular software
engineering practices should suffice to ensure robust
operation. However, software engineering techniques tend
to not yield a way to measure robustness if there is no
tracability to specifications. For example, test coverage
metrics tend to measure whether code that exists is tested,
but may provide no insight as to whether code to test for and
handle non-specified exceptions may be missing entirely.

There are tools which test for robustness problems by
instrumenting software and monitoring execution (e.g.,
Purify [23], Insure++ [22], and BoundsChecker [21]). While
these tools test for robustness problems that are not
necessarily part of the application software specification,
they do so in the course of executing tests or user scripts.
Thus, they are useful in finding exceptional conditions
encountered in testing that might be missed otherwise, but
still rely on traditional software testing (presumably
traceable back to specifications and acceptance criteria) and

do not currently employ additional fault injection
approaches. Additionally, they require access to source
code, which is not necessarily available. In contrast, the
Ballista testing website works by sending selected
exceptional inputs directly into software modules at the
module testing level, rather than by instrumentating existing
tests of an integrated system. Thus it is complementary to,
rather than a substitute for, current instrumentation
approaches.

3 THE BALLISTA TESTING METHODOLOGY

The Ballista robustness testing methodology is based on
combinational tests of valid and invalid parameter values for
subroutine calls, methods, and functions. In each test case, a
single software Aodule under 7est (or MuT) is called a single
time to determine whether it is robust when called with a
particular set of parameter values. These parameter values,
or test values, are drawn from a pool of normal and
exceptional values based on the data type of each argument
passed to the MuT. A test case therefore consists of the
name of the MuT and a tuple of test values that are passed as
parameters (i.e., a test case can in general be described as a
tuple:  {MuT name, test valuel, test value2, ..,
test_valueN} corresponding to a procedure call of the form:
MuT name(test valuel, test value2, ..., test_valueN) ).

Thus, the general approach to Ballista testing is to test the
robustness of a single call to a MuT for a single tuple of test
values, and then repeat this process for multiple test cases
that each have different combinations of valid and invalid
test values. A detailed discussion follows.

AP/ inttrap (double a, double b, int N)
DOUBLE PRECISION DOUBLE PRECISION INTEGER
TESTING  FLOATING POINT FLOATING POINT VALUE
OBJECTS TEST OBJECT TEST OBJECT OBJECT
ZERO ZERO MAXINT
ONE ONE MININT
NEGONE NEGONE ZERO
TWO TWO ONE
PI PI NEGONE
PIBY TWO PIBY TWO 2
TWOPI TWOPI 4
7EST |E E 8
DBLMAX DBLMAX 16
VALUES | pBLMIN DBLMIN 32
SMALLNOTZERO SMALLNOTZERO 64
NEGSMALLNOTZERO NEGSMALLNOTZERO 1K
| 64K
TEST CASE inttrap (ONE, DBLMAX, 64K)

Figure 1. Ballista test case generation for the inttrap () function. The arrows show a single test case
generated from three particular test values; in general all combinations of test values are tried during the

course of testing.



Scalable testing without functional specifications

The Ballista testing framework achieves scalability by using
two techniques to abstract away almost all of the functional
specification of the MuT. The reasoning is that if the
functional specification can be made irrelevant for the
purposes of testing, then no effort needs to be made to create
such specifications (this is especially important for testing
legacy code, code from third party software component
vendors, or code with specifications that are not in machine-
usable form).

The first technique to attain scalability is that the test
specification used by Ballista is simply “doesn’t crash;
doesn’t hang.” This simple specification describes a broad
category of robust behavior, applies to almost all modules,
and can be checked by looking for an appropriate timeout on
a watchdog timer and monitoring the status of a task for
signs of abnormal termination. Thus, no separate functional
specification is required for a module to be tested (those few
modules that intentionally terminate abnormally or hang are
not appropriate for testing with Ballista).

The second technique to attain scalability is that test cases
are based not on the functionality of the MuT, but rather on
values that tend to be exceptional for the data types used by
the MuT. In other words, the types of the arguments to a
module completely determine which test cases will be
executed without regard to what that module does. This
approach eliminates the need to construct test cases based on
functionality. Additionally (and perhaps surprisingly), in
full-scale testing it has proven possible to bury most or all
test “scaffolding” code into test values associated with data
types. This means that to a large degree there is no need to
write any test scaffolding code, nor any test cases when
testing a new module if the data types for that module have
been used previously to test other modules. The net result is
that the effort to test a large set of modules in an API tends to
grow sublinearly with the number of modules tested. For
example, testing 233 functions and system calls in the
POSIX API with real time extensions [14] required defining
only 20 data types.

For each function tested, an interface description is created
with the function name and type information for each
argument. The type information is simply the name of a type
which Ballista is capable of testing. In some cases specific
information about how the argument is used was exploited to
result in better testing (for example, a file descriptor might
be of type i nt, but has been implemented in Ballista as a
specific file descriptor data type).

Ballista bases the test values on the data types of the
parameters used in the function interface (Figure 1). For
example, if the interface of a function specifies that it is
passed an integer, Ballista builds test cases based on what it
has been taught about exceptional integer values. In the case
of integer, Ballista currently has 22 potentially exceptional
test values. These include values such as zero, one, powers
of two, and the maximum integer value.

Ballista uses the interface description information to create
all possible combinations of parameters to form an
exhaustive list of test cases. For instance, suppose a MuT
took two floats and a integer as input parameters. Given that
there are 22 integer test values and 11 float test values,
Ballista would generate 22 x 11 x 11= 2662 test cases.

Implementation of test values

Data types for testing can themselves be thought of as
modules, which fit into a hierchical object-oriented class
structure. This simplifies the creation of new data types and
the refinement of existing types. Each data type is derived
from a parent type, and inherits all of the parent’s test cases
up to the root Ballista type object. For instance, a data type
created to specifically represent a date string would have
specific test cases associated with it that might include
invalid dates, valid dates, dates far in the past, and dates in
the future (Figure 2). Assuming the direct parent of the date
string data module were string, it would inherit all of the test
cases associated with a generic string, such as an empty
string, large “garbage” strings, and small “garbage” strings.
Finally the generic string might inherit from a generic
pointer data type which would be a base type and include a
test for a NULL pointer.

Each test value is associated with up to three code segments.
The first code segment is a constructor that creates an
instance of the data type with specific properties. For
example, an integer constructor simply returns an integer
value, but a file constructor might create a file, fill it with
data, and set certain access permissions. The optional
second code segment modifies the effects of the constructor,
such as deleting a file while returning a file handle as if the
file existed and were open. (This second phase is required to
prevent freed resources from being unintentionally recycled
if the same data type is used twice in a parameter list.) The
third code segment deletes or frees any system resources
which may have been allocated by the constructor segments,
such as deleting a file or freeing system memory after the
test case has been executed.

Date String 12/1/1899
11171900
Generic String  BIGSTRING 2/29/1984
2 STRINGLEN1 ;"33/1;1223
, , ALLASCII
Generic Pointer NONPRINTABLE 12/0/1994
NULL 8/31/1992
DELETED 8/32/1993
1K 12/31/1999
PAGESIZE 1172000
MAXSIZE 1213172046
SIZE1 1/1/2047
INVALID 1/1/8000

Figure 2. A date string data type
inherits test cases from generic string
and generic pointer.



Currently, test values are written based on programmer
experience and a brief survey of testing literature. Future
work will include adding randomized testing and recording
fortuitous test values to be reviewed for inclusion the test
value database.

Testing results

Ballista categorizes test results according to the CRASH

severity scale: [18]

* Catastrophic failures corrupt the operating system’s state,
generally resulting in a machine crash or reboot.

* Restart failures cause the process to “hang” requiring a
specific kill signal to be sent to terminate the process
after an application-dependent time interval (typically 1
to 10 seconds)

+ Abort failures cause abnormal process termination (a
“core dump”), and tend to be the most
prevalent.

» Silent failures occur when the MuT returns

with no indication of error when asked to
perform an operation on an exceptional

4 THE BALLISTA WEB SERVER

The next step in Ballista testing has been to create a much
more comprehensive testing capability, and has several
goals. One goal is to couple testing with data analysis to
determine patterns in robustness failures (for example,
automated analysis of various tests might reveal that
robustness failures are caused by a NULL in the second
argument to a module, rather than simply yield a laundry list
of robustness failures). A second goal is to create far more
comprehensive testing, and couple it with a search engine
that identifies “interesting” regions in the test response space
to adaptively create tests to perform more sophisticated
failure analysis. A third goal is to use the results of testing to
create “wrappers” to catch and prevent values from being
passed to modules if they are likely to cause robustness
failures.

Normalized Failure Rate by OS

value. For example, the floating point SunOS 5.5
libraries distributed with several operating SunOS 4.13
systems fail to return an error code, and o QNX 4.24
instead return as if the result were accurate E SSNFX 14 42%
when computing the logarithm of zero[9]. © OSF:'I 32
Silent failures can currently be identified Z NetBSD
only by using inferences from N-version Lynx
result voting, and so are not identified by the n Linux
Ballista testing service. O I"f'Xg-%
* Hindering failures are characterized by the HPUXr!IXO 2'0
MuT returning an error code that incorrectly )
describes the exceptional condition that HT:LI:Je)égSOS
precipitated the error. Hindering failures AlIX
have been observed to be common in - : T I I
previous work [17], but are not addressed by 0 5 10 15 20 25
this version of Ballista due to the lack of a B Abort o Norma“zed % Failure
(o}

method to automatically identify this class of
failure.

[ | Restart%

* Indicates 1 function had Catastrophic Failure
** Indicates 2 functions had Catastrophic Failures

Although the Ballista methodology seems unsophisticated, it
uncovers a surprising number of robustness failures even in
mature software systems. For example, when used to test
233 function calls across 15 different POSIX compliant
operating systems, Ballista found normalized robustness
failure rates from 9.99% to 22.69%, with a mean of 15.16%
(Figure 3)[9]. Preliminary testing of other software systems
seems to indicate comparable failure rates.

Client-server based remote testing

In order to achieve these future goals and to promote
portability, a next-generation Ballista testing system has
been written as an Internet-based remote testing service.
The Ballista framework is built around a client-server core
which allows a minimal client and the MuT to be run on a
developer’s machine, while the remote Ballista server directs
the testing and catalogues the results (Figure 4). The
communication between the client and the server is handled
by using RPC (Remote Procedure Call [3]) to achieve a high
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Figure 4. Overview of network test architecture

degree of portability.

The advantages of this client-server architecture go beyond
portability (although, for an academic software development
group, low-effort portability is a significant benefit to start
with!).  As Ballista matures in capability these new
capabilities can be deployed without going through a
software distribution and upgrade cycle at remote sites.
With Ballista, these capabilities are expected to not just be
software revisions, but also an accumulation of increasingly
better heuristics and predefined data types collected from
monitoring use of the Web site. Thus, users of the web site
will in the normal course of events contribute to increasing
its value. Because Ballista testing does not require source
code nor specifications (and object code is neither
transferred to nor saved at the web site), this data collection
can proceed without compromising the confidentiality of
proprietary software.

One obvious drawback to this approach is speed. When the
client makes an RPC call to the remote server to begin
testing, the server generates descriptions of each test value
for the entire set of test cases, and transmits them to the
client. To generate exhaustive test cases for even a
moderately sized input space would require the transmission
of several megabytes of data. Experiments on standalone
harness testing indicate that random sampling of
combinations of test values tends to yield robustness failure
rates within one percentage point of actual failure rates.
Thus, initially the web site will test a limited number of
randomly chosen test value combinations. The second
generation of the web site will send batches of tests to reduce
startup latency. More sophisticated versions of the web site
will use batches of directed, adaptive searching to create
more accurate characterisations of robustness failure regions
within the module response space. Heuristic techniques from
other testing systems such as AETG [5] and TOFU [4] will
be adopted as appropriate.

WWWE, TUSER'S
RPC .|cCOMPUTER
— :

MODULE
UNDER
TEST

An example of Web Server-based testing

In order to illustrate the usage of Ballista, consider the code
segment for performing trapezoidal approximation of
numerical integration given in Listing 1. It is typical of
textbook algorithms in that is is efficient, and easy to
understand. The client-side host was a Digital Unix Alpha
Station 500, running Digital Unix 4.0D.

doubl e f(double i)
{

1 %1 % -
P *ixig

return
}
doubl e inttrap(doubl e a,double b,int N)

{
int i; double t=0; double w = (b-a)/N,
for (i=1;i<=N;i++)
t+= wr(f(a+(i-1)*w) +f (a+i*w))/2;
return t;

}

Listing 1. Trapezoidal numerical integration algorithm [25]
and target function f.

The Ballista testing service web site provides a simple
interface with which a user can configure the test harness to
run robustness tests on user code. After downloading and
uncompressing the client software, all that is required is to
simply fill in the appropriate sections of a web form to tell
Ballista the name of the module in which the MuT exists, an
appropriate header (“.h”) file so that the C or C++ compiler
has function prototype information, the name of the function
to be tested, and the appropriate data types for its interface.
The Ballista server processes the information supplied by a
user (without reading any files from the client disk), and
generates a client-side perl script to automatically perform
the testing and send test results to the server.

Once testing is complete, the results can be viewed through
the web interface. Clicking on the description of a specific
test and its result causes the web server to generate a source



program which can be compiled and run on the client-side
system. This resulting program can duplicate the result of
that test so that failures may be easily reproduced and fixed.

For this example, Ballista ran a total of 2662 tests on the
inttrap () function in Listing 1. Ballista found 807 tests
which caused abort failures and 121 tests which caused
restart failures, for a robustness failure rate of 35%. Of
course, it 1s important to realize that any failure rate is going
to be directly dependant on the test cases themselves. In this
case the MuT was passed two floats and an integer. There
were several values for both float and int that were not
exceptional for inttrap () (such as e and p1). This means
that any failure rates are relative, and any comparisons to be
made among multiple modules should use the same data type
implementations.

On the surface, it seems astonishing that a simple published
algorithm such as this would have so many robustness
failures. However, in all fairness, this is a textbook algorithm
intended to convey how to perform a particular operation,
and is presumably not intended to be “bullet-proof”
software. Additionally, the Ballista methodology tends to
bombard a MuT with many test cases containing exceptional
conditions which generate failures having the same root
cause. One must examine the details of the test results to
obtain more insight into the robustness of the MuT (and it is
this process that will be automated in the future).

By looking at the results more closely, it became apparent
that all of the restart failures were due to the integer value of
MAXINT being used as the value of N, the number of
subdivisions. In this case, the algorithm attempted to sum
the areas of roughly 2 billion trapezoids. After waiting about
1 second (this value is user configurable) Ballista decided
that the process had hung, terminated it, and classified it as a
restart failure. While there may be some applications in
which this is not a restart failure, in many cases it would be
one, and it seems reasonable to flag this situation as a
potential problem spot. Thus, the importance of Restart
failures found by Ballista varies depending on timing
constraints of the application, and will detect true infinite
loops if present.

Of the 807 abort failures detected by Ballista for this
example, 121 were directly caused by a divide by zero
floating point exception. This is probably the easiest type of
exceptional condition to anticipate and test for. Seasoned
programmers can be expected to recognize this potential
problem and put a zero test in the function. Unfortunately,
there is a large amount of software developed by relatively
unskilled programmers (who may have no formal training in
software engineering), and even trained programmers who
have little knowledge about how to write robust software.

The remaining 686 aborts were due to overflow/underflow
floating point exceptions. This is an insidous robustness
failure, in that nearly every mathematical function has the
potential to overflow or underflow. This exception is
commonly overlooked by programmers, and can be difficult

to handle. Nonetheless, such problems have the potential to
cause a software system to fail and should be handled
appropriately if robust operation is desired.

The floating point class of exceptions can be especially
problematic, especially in systems whose microarchitecture
by default masks them out. Although this may seem
incongruous, the fact that the exception is masked out may
lead to problems when hardening algorithms against
robustness failures. If the exception does not cause an abort
and the software does not check to make certain that an
overflow/underflow did mnot occur, Silent failures
(undetectible by the current Ballista service) may result.
Resultant calculations may be at best indeterminate and at
worst wrong, depending on the application; thus it is
strongly recommended that full IEEE floating point features
[13] such as propagation of NaN (“Not A Number™) values
be used even if Ballista testing has been applied to a
computational software module.

5 GENERALIZING THE APPROACH

The first-generation, standalone Ballista test harness was
developed having in mind POSIX operating system calls as a
full-size example system. The results achieved the goals of
portability and scalability. However, there were two
significant limitations. The POSIX testing harness assumed
that any signal (“thrown” exception) was a robustness failure
because the POSIX standard considers only error return
codes to be robust responses. Second, the result that POSIX
testing required absolutely no scaffolding code for creating
tests was a bit too good to be true for general software
involving distributed computing environment initialization
and call-backs. However, both of these i1ssues have been
addressed in the Web-based testing system.

Support for exception handling models

The Ballista framework uses ideas on how to build a robust
interface developed by the software engineering community.
Early robustness work strove to discover multiple ways to
handle exceptional conditions. [12] [11] Over the years two
methods have come to dominate current implementations.
These methods are the termination model and the resumption
model . [10]

In current systems the two main exception handling models
manifest themselves as error return codes and signals. It has
been argued that the termination model is superior to the
resumption model. [7] Indeed, the implementation of
resumption model semantics in POSIX operating systems
(signals), provides only large-grain control of signal
handling, typically at the task level resulting in the
termination of the process (e.g. SIGSEGV). This can make
it difficult to diagnose and recover from a problem, and is a
concern in real-time systems that cannot afford large-scale
disruptions in program execution.

Implementations of the termination model typically require a
software module to return an error code (or set an error flag



variable such as errno in POSIX) in the event of an
exceptional condition. In C4++ the use of “thrown”
exceptions is also included in the termination model. For
instance, a function that includes a division operation might
return a divide by zero error code if the divisor were
calculated to be zero. The calling program could then
determine that an exception occured, what it was, and
perhaps determine how to recover from it.  POSIX
standardizes ways to use error codes, and thus provides
portable support for the error return model in building robust
systems. [14] Recent work on the Xept method [27]
describes a way in which error checking can be encapsulated
in a wrapper, reducing flow-of-control disruption and
improving modularity.

The Ballista framework supports both the termination model
and resumption model as they are implemented in standard
C/C4++. With the termination model Ballista assumes that
exceptions are thrown with some amount of detail via the
C++ try-throw-catch mechanism so that corrective action
can be taken. In the case of error code returns, it 1s assumed
that there is an error variable that can be checked to
determine if an error has occured (currently the errno
variable from POSIX is supported). Thus, an “unknown”
exception or a condition that results in an unhandled generic
exception such as a SIGSEGV segmentation violation in a
POSIX operating system is considered a robustness failure.

Additionally, Ballista has the ability to add user defined
exception handlers to support those modules which use C++
exception handling techniques. Ballista embeds each test
call into a standard try-catch pair. Any thrown exception not
caught by the user defined catch statements will be handled
by the last catch (.. .) in the test harness and treated as
an Abort robustness failure.

Support for callbacks and scaffolding

We are in the process of using Ballista to test the High Level
Architecture Run Time Infrastructure (HLA RTI -- a
simulation backplane system used for distributed military
simulations[8]). This example system brought out the need
for dealing with exceptions, since errors are handled with a
set of thrown exceptions specified by the API. Additionally,
the HLA RTI presented problems in that a piece of client
software must go through a sequence of events to create and
register data structures with a central application server
before modules can be called for testing.

While at first it seemed that per-function scaffolding might
be required for the HLA RTL it turned out that there were
only 12 equivalence classes of modules with each
equivalence class able to share the same scaffolding code.
Thus the Ballista Web testing service has the ability to
specity scaffolding code (a preamble and a postamble) that
can be used with a set of modules to be tested. The preamble
also provides a place for putting application-specific
“include” files and so on. While there are no doubt some
applications where clustering of functions into sets that share
scaffolding code is not possible, it seems plausible that this

technique will work in many cases, achieving scalability in
terms of effort to test a large set of modules.

There are some software systems which require a calling
object to be able to support a series of callbacks, either as
independant functions or methods associated with the calling
object. Two examples of this are a function that analyzes
incoming events and dispatches them to registered event
handlers, or a registration function which uses member
functions of the calling object to obtain the information it
requires. These situations require the testing framework
itself to be enhanced with either the functions or appropriate
object structure to handle these cases.

To facilitate Ballista’s ability to test these types of systems
we provide a user the ability to build the main testing
function call into an arbitrary sub-class, or add any
independant functions needed. As with the other
customizeable features of Ballista, the additions can be
changed between modules. Although this feature adds back
some of the per function scaffolding that we eschewed in the
previous version of Ballista, it was added to allow testing of
code that requires it if desired (and it may be completely
ignored for many users).

Phantom parameters — a generalization of the Ballista
testing method

At first glance, the parameter-based testing method used by
Ballista seems limited in applicability. However, a bit of
creativity allows it to generalize to software modules without
parameters, modules that take input from files rather than
parameters, and tests for how system state affects modules
that do not have parameters directly related to that state.

In order to test a module without parameters, all that need be
done is create a dummy module that sets appropriate system
state with a parameter, then calls the module to be tested.
For example, testing a pseudo-random number generator
might require setting a starting seed value, then calling a
parameterless function that returns a random number in a
predefined range. While this could be accomplished by
creating preamble test scaffolding to set the starting seed, the
Ballista tool supports a more elegant approach. When
specifying parameters for a module, “phantom” parameters
can be added to the list. These parameters are exercised by
Ballista and have constructor/destructor pairs called, but are
not actually passed to the MuT. So, for example, testing the
random number generator is best done by creating a data
type of “random number seed” that sets various values of
interest, and then using that data type as a phantom
parameter when testing the otherwise parameterless random
number generator.

A similar approach can be taken for file-based module inputs
rather than parameter-based inputs. A phantom parameter
can be defined which creates a particular file or data object
(or set of such objects) with a particular format. If that
object is accessed other than with a parameter (for example,
by referencing a global variable or looking up the object in a



central registry) the phantom parameter can appropriately
register the object. In a future version of the Web site,
phantom parameters will be able to themselves take
parameters, so that for instance a file name could be passed
to a generic file creation data type in support of this scheme,
and recursive/iterative creation of test sets could be
performed.

Given the concept of phantom parameters, it becomes clear
how to test modules for system states which are not reflected
in explicit parameters. Phantom parameters can be added to
set system state as desired. As an example, a phantom
parameter data type might be created to fill up disk space
before a disk accessing function is called.

Thus, Ballista testing has a reasonable (although certainly
not complete) ability to test not only single module calls with
single sets of parameters, but the effects of such calls in a
wide variety of system states. With the extension of phantom
parameters, it can provide highly deterministic testing of
what amounts to a wide variety of sequences of function
calls (reflected in system state set by that sequence of calls).

6 CONCLUSIONS AND FUTURE WORK

This paper marks the official announcement of public
availability of the Ballista robustness testing Web service (at
http://www.ices.cmu.edu/ballista). This service can test a
large variety of software modules for robustness to
exceptional input conditions. FEarly versions of this testing
approach found robustness failure rates ranging from 10% to
23% on a full-scale test of fifteen POSIX operating system
implementations. It is expected that applying the testing
service to a larger variety of applications will provide
valuable insight into both the prevalence of and the types of
robustness failures to be found in other varieties of real code.

While at first glance the testing model of a single function
call with a single set of parameter seems quite limited, the
Ballista testing approach and generalizations of it provide a
rich testing capability. Basing tests on parameter types
achieves scalability, but still allows a significant amount of
system state to be set up while requiring little or no per-
function scaffolding. The addition of a “phantom
parameter” capability extends the Ballista approach to
permit setting up unrelated system state before calling the
module under test with a specific set of actual parameter
values.

Future work on the Ballista web testing service will include a
refined ability to do automatic, fine-grain testing of complex
data structures. Additionally, adaptive robustness testing
strategies will permit characterizing the regions of input
values which evoke robustness failures, and will support an
attempt to automatically create software wrappers to detect
and gracefully deal with potentially dangerous parameter
input values.
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