29th Annual International Symposium on Fault-Tolerant Computing, 15-18 June 1999, Madison, Wisconsin.

Comparing the Robustness of POSIX Operating Systems

Philip Koopman & John DeVale
Department of Electrical and Computer Engineering &
Institute for Complex Engineered Systems
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
koopman@cmu.edu jdevale@ece.cmu.edu

Abstract

Critical system designers are turning to off-the-shelf
operating system (OS) software to reduce costs and time-
to-market. Unfortunately, general-purpose OSes do not
always respond to exceptional conditions robustly, either
accepting exceptional values without complaint, or
suffering abnormal task termination. Even though direct
measurement is impractical, this paper uses a multi-
version comparison technique to reveal a 6% to 19%
normalized rate at which exceptional parameter values
cause no error report in commercial POSIX OS
implementations. Additionally, 168 functions across 13
OSes are compared to reveal common mode robustness
failures. While the best single OS has a 12.6% robustness
failure rate for system calls, 3.8% of failures are common
across all 13 OSes examined. However, combining C
library calls with system calls increases these rates to
29.5% for the best single OS and 17.0% for common mode
failures. These results suggest that OS implementations
are not completely diverse, and that C library functions are
both less diverse and less robust than system calls.

1. Introduction

The robustness of the operating system (OS)
Application Programming Interface (API) is becoming
increasingly important. Cost and time-to-market
constraints are pressuring even critical-system developers
to use off-the-shelf commercial OS software. While many
of these OSes are generally considered robust, the Ballista
testing system has produced results showing that
commercial OSes have a significant robustness failure rate
for single procedure calls with exceptional parameter
values at the task level, and even a few readily reproducible
catastrophic failure modes [13].

This paper compares the results of multiple OS
implementations to increase the understanding of their
robustness failure modes and, in particular, instances in
which they fail to detect exceptional input parameter
values. Additionally, a large set of test data on multiple

Koopman & DeVale

implementions of the same API offers a unique chance to
explore the issue of quantifying large-scale software
diversity, albeit only of exception handling characteristics.

First, a multi-version comparison of Ballista testing
results is used to identify so-called Silent robustness
failures in fifteen OSes. A Silent failure is one in which a
function call produces no indication of an error when fed
exceptional parameter values when, in fact, such an
indication should be produced to implement robust
behavior. These failures cannot otherwise be measured
without a behavioral specification. Additional results
presented include using a similar technique to “distill” non-
exceptional test cases from the Ballista combinational
testing approach, and a listing of the data types most often
correlated with robustness failures.

Next, N-way comparisons of different OS robustness
testing results are used to measure software diversity from
the point of view of robust exception handling. While
actually implementing a system with an N-version OS
seems impractical, the results of this comparison give the
first large-scale experimental results for understanding the
level of software diversity that is likely to be found in
commercial products (again, limited to exception handling
characteristics). The results of comparing thirteen OS
implementations (two OSes had to be eliminated to
maximize usable comparison data) show that OS
implementations are not entirely diverse, and that an
assumption of failure independence seems less
unreasonable for OS system calls than for C library
functions.

2. Background

This paper takes concepts from the field of N-version
software fault tolerance and combines them with results
from a scalable robustness testing methodology. It then
assesses OS robustness failures and the inherent diversity
of multiple version techniques on one type of large
software system.

FTCS-29

2.1. N-version software

N-version software involves using N different versions
of programs implementing the same specification for
building robust, fault-tolerant software [1][2]. Generally
these systems use an idea similar to N-version modular
hardware redundancy, basing actions upon a majority vote
taken of several software versions to determine which
output values are correct. Numerous experiments have
been performed to study N-version software effectiveness
in several mission critical areas, most notably in the
aerospace industry [3][5][15]. Variations on this theme
have been successfully implemented in safety critical
industrial systems such as the Airbus flight control system,
NASA’s Space Shuttle, and railway control systems.

As an example, a large research effort involving fault
tolerant software controls for a NASA avionics system
involved five independent teams of developers chosen
from various universities [8]. They carefully constructed a
specification and performed several levels of testing on the
developing software, which upon completion averaged
approximately 2500 lines of Pascal code. Detailed analysis
was performed on the collected data in a later study, and
found that less than 20% of the faults detected could be
classified as similar[17]. Further, the study concluded that
after certification testing this number dropped significantly,
and had eliminated all specification faults.

Another study suggests that an assumption of failure
independence based on diversity may not be universally
possible [4][9][10], but these results are controversial
[31[11][17]. More importantly, such studies are inherently
limited by the high cost of software development, making
it prohibitively expensive to conduct full-scale N-version
software studies in general. So, it is reasonable to ask an
assumption of multi-version diversity scales to systems
having a million lines of code, but in general undertaking a
parallel development effort of that magnitude is
impractical.

Fortunately, there are a some commercially developed,
full-size systems built to standard Application
Programming Interfaces (APIs). These systems can be
tested to determine the relative independence of failures.
The problem of evaluating multiple version effectiveness
can thus be reduced to one of finding a test suite which is
economical to develop, and yet has not already been used
by software vendors for defect removal. This paper uses
such results for robustness failures found by the Ballista
robustness testing system applied to POSIX [7] OS
implementations.

2.2. Ballista testing methodology

In brief, the Ballista testing methodology involves

Koopman & DeVale

automatically generating combinations of exceptional and
valid parameter values to be used in calling software
modules. The results of these calls are examined to
determine whether the module detected and notified the
calling program of an error, the task abnormally
terminated, the task hung, or whether the entire system
crashed. A detailed discussion of test case generation can
be found in a previous paper [13], but the general test
methodology is summarized below.

Ballista operates at the level of single function calls to
create repeatable, simple tests that nonetheless uncover
robustness failures. In each fest case, a single software
Module under Test (or MuT) is called a single time to
determine whether it is robust when called with a particular
set of parameter values. These parameter values, or fest
values, are drawn from pools of normal and exceptional
values based on the data type of each argument passed to
the MuT. A test case therefore consists of the name of the
MuT and a tuple of test values that are passed as
parameters (i.e., a test case is a procedure call of the form:
MuT name(test valuel, test value2, ..)) . Thus, the
general approach to Ballista testing is to test the robustness
of a single call to a MuT for a single tuple of test values,
and then repeat this process for multiple test cases that each
have different combinations of both valid and invalid test
values. While actual tests are performed in batches for
efficiency, in practice virtually all test results have been
found to be reproducible in isolation.

The Ballista test harness categorizes the test results
according to the CRASH severity scale [12]:

 Catastrophic failures occur when the entire OS

becomes corrupted or the machine crashes or reboots.

In other words, this is a complete system crash.

* Restart failures occur when a function call to an OS
function never returns, resulting in a task that has
"hung" and must be terminated by force.

Abort failures tend to be the most prevalent, and result
in abnormal termination (a "core dump") of a task
caused by a signal generated within the MuT.

Silent failures occur when an OS returns no indication
of error on an exceptional operation which clearly can-
not be performed (for example, writing to a read-only
file), and which should in fact produce an error report
in a robust system. This is not to be confused with the
problem of non-diagnosable experiments due to limited
observability, because the error reporting mechanism is
fully observable, and is observed to falsely indicate “no
error” (this is an application-centric rather than OS-
centric view).

Hindering failures occur when an incorrect error code
is returned from a MuT, which could make it more dif-
ficult to execute appropriate error recovery. These fail-
ures have been observed in practice, but are beyond the

FTCS-29

scope of this paper.
There are two additional possible

Normalized Raw Failure Rates for 233 POSIX Calls

AIX 4.1 [: :

outcomes of executing a test case. A DUNIX 3.2 : :) 7 Catastrophic
test case might return with an error DUNIX 4.0 [i
code that is appropriate for invalid FreeBSD2.2.5
parameters forming the test case. This HP-UX 9.05 i
is a case in which the test case passes — HP-UX 10.20 1 Catastrophic
in other words, generating an error Irix 5.3 1E
code is the correct response. Irix 6.2 1 Catastrophic
Additionally, in some tests the MuT Linux 2.0.18 [B Abort Failures
legitimately returns no error code and LynxOS 2.4.0 1 Catastrophic|] Restart Failure
successfully completes the desired NetBSD 1.3 |
operation. This happens when the QNX 4.22 2 Catastrophics
parameters in the test case happen to QNX 4.24
be all valid (a non-exceptional test SunOS 4.1.3

SunOS 5.5

case), or when it is unreasonable to
expect the OS to detect an exceptional 0%
situation (such as pointing to an
invalid address in the same memory Fi

. igure 1.
page as a valid address).

3. OS test data

Fifteen OS implementations from ten vendors were
tested with Ballista, yielding a total of 1,074,782 data
points on up to 233 selected POSIX functions and system
calls (most systems did not support all tested calls, and thus
not all tests were run on every OS). The compilers and
libraries used to generate the test suite were those provided
by the OS vendor. In the case of FreeBSD, NetBSD,
Linux, and LynxOS, this meant that GNU C version 2.7.2.3
and the GNU C libraries were used to build the test suite.
A summary of robustness failure rates is shown in Figure 1,
in which an average failure rate is computed by
normalizing the failure rate as a proportion of failed test
cases for each function, and then taking a uniformly
weighted arithmetic mean across all supported functions.
(For a particular application, a weighted mean per an
operational profile might be desirable, but the results
presented here are generic for the API rather than any
particular system.) Test execution took approximately
three to eight hours per system.

There were six function/OS pairs that resulted in entire
operating system crashes (either automatic reboots or
system hangs). As an example of these Catastrophic
failures, Irix 6.2 crashes and requires a manual hardware
reset when executing the call:

munmap (malloc ((1<<30+1)),MAXINT) ;

Restart failures were relatively scarce, but present in all
but two operating systems. Abort failures were common,
indicating that in all operating systems it is relatively
straightforward to elicit a core dump from an instruction
within a function or system call. A check was made to

Koopman & DeVale

5% 10% 15% 20% 25%
Normalized Failure Rate

Raw robustness tests on 15 POSIX operating systems reveal a
significant Abort failure rate and several Catastrophic failures.

ensure that Abort failures were not due to corruption of
stack values and subsequent corruption/misdirection of
calling program operation.

A particular point of interest was that previously
reported results were subject to criticism by OS vendors
because in several cases the latest available OS version had
not been tested. However, when a newer version was
tested there was not necessarily an improvement in
robustness (e.g., for HP-UX and QNX). Additionally,
Figure 1 reports results for DUNIX 4.0B with no
Catastrophic failures. However, on DUNIX 4.0D a
catastrophic failure sprang into existence due to an
apparent change in the aio_raw library for the call:

mprotect (malloc((1<<29)+1),65537,0);.

There are, however, some questions left unanswered by
the data in Figure 1. For example, the designers of
FreeBSD have told us that they intentionally generate
Abort failures as their preferred error reporting mechanism,
and suggested it was possible they look bad by comparison
because other OS implementations might instead suffer
from elevated levels of Silent failures. (The merits of the
FreeBSD strategy involve a debate about the desire to
make errors highly visible during development vs. a desire
to perform fine-grain error recovery once an application is
fielded, but that is beyond the scope of this discussion.)
For example, this might mean that AIX looks better than it
really is because address 0 is readable without exception,
leading to the possibility of elevated Silent failure rates for
NULL pointer dereferencing. Therefore, it was important
to determine Silent failure rates even though they could not
be directly measured.

FTCS-29

4. Data analysis via multi-version comparison

The scalability of the Ballista testing approach hinges
on not needing to know the functional specification of a
MuT, so that the same combinations of parameter values
can be used to test any function taking a given tuple of data
types. In the general case, this results in having no way to
deal with tests that pass with no indication of error — they
could either be non-exceptional test cases (in which all
parameter values fall within normal, expected ranges) or
Silent failures, depending on the actual functionality of the
MuT. However, the availability of a number of operating
systems with a standardized API permits estimating and
refining robustness failure rates using a variation of
multiple version software voting.

There have been many efforts to define and evaluate
various multiple version voting algorithms and schemes
(e.g., [6][14][16]). Most of these focus on resolving
problems with the existing standard voting techniques. Of
particular concern is how separate algorithmic approaches
might induce different round-off errors, leading to separate
correct, but different, answers.

When applying voting techniques to the domain of
software robustness, we benefit from our studied
disinterest in the functional correctness of the output.
Thus, robustness testing results are only concerned with
whether parameter values were in fact exceptional, whether
exceptional values were detected, and whether at least one
of N OS versions responded to exceptional values
gracefully, but not to whether the function performed as
specified (which is obviously important, but is more
properly the subject of traditional
software testing). Thus, for our
purposes, it suffices if at least one of

from masking exceptions that might otherwise go un-
noticed on other parameters. But, also, partly this is a side-
effect of scalable testing in which all functions are tested
with parameter values that may be exceptional for only
some functions (for example, a read-only file is exceptional
for a write function, but not for a read function tested with
the same parameter values).

N-way comparisons were used to identify and prune
non-exceptional test cases from the data set. The
comparisons assumed that any test case in which all
operating systems returned with no indication of error were
in fact non-exceptional tests (or, were exceptional tests
which could not reasonably be expected to be detected on
current computer systems). In all, 129,731 non-
exceptional tests were removed across all 15 operating
systems. Figure 2 shows the adjusted failure rates after
removing non-exceptional tests.

Hand sampling of several dozen removed test cases
indicated that all of them were indeed non-exceptional,
thus suggesting a low rate of false screenings. While there
is the possibility that exceptional test cases slipped passed
this screening, it seems unlikely that the number involved
would materially affect the results.

4.2. An estimation of Silent failure rates

Once the non-exceptional tests were removed, a
different variation on multi-version software comparison
was used to detect Silent Failures. The heuristic used was
that if at least one OS returns an error code, then all other
operating systems should either return an error code or

Normalized Failure Rates for 233 POSIX Calls

AlX 4.1
DUNIX 3.2
DUNIX 4.0D
FreeBSD 2.2.5
HPUX 9.05
HPUX 10.20
Irix 5.3

Irix 6.2

Linux

N versions performs exception
detection and returns gracefully, so
we use a one-of-N comparison
strategy rather than requiring an M-
of-N majority voting scheme. For
example, if any OS version reports an
exception condition, it is assumed
that all versions should have detected
that exception (false alarm rates are

discussed shortly). Lynx

NetBSD
QNX 4.22
QNX 4.24

SunOS 4.13
SunOS 5.5

4.1. Elimination of non-excep-
tional tests

Ballista uses combinations of

| T
bl *
EoOOT | *

o S P

‘ [Abort %
bSO * E=3 Silent %

1 Restart %

| /
* Catastrophic

Looo] *
T
PSS *
: |
p] | e ke
LS OO0

1
|2

bOOC

non-exceptional 0%
parameter values to do testing. Partly
this is to avoid correct detection of
exceptional values for one parameter

exceptional and

Koopman & DeVale

10% 20% 30% 40% 50%
Normalized Failure Rate (after analysis)

Figure 2. Multi-version comparisons eliminate the effects from non-exceptional
tests and permit estimating Silent failure rates.

FTCS-29

suffer some form of robustness failure (typically an Abort
failure). As an example, when attempting to compute the
logarithm of zero, AIX, HPUX-10, and both versions of
QNX failed to return an error code, whereas other
operating systems tested did report an error code. This
indicated that AIX, HPUX-10, and QNX had suffered
Silent robustness failures.

Of course, the heuristic of detection based on a single
OS reporting an error code is not a completely accurate
mechanism. Manual random sampling of several dozen
results indicated that approximately 80% of detected test
cases were actually Silent failures. Of the 20% of test
cases that were false alarms:

* 28% were due to POSIX permitting discretion in how
to handle an exceptional situation. For example,
mprotect () is permitted, but not required, to return
an error if the address of memory space does not fall on
a page boundary.

21% were due to bugs in C library floating point rou-
tines returning false error codes. For example, Irix 5.3
returns an error for tan (-1.0) instead of the correct
result of -1.557408. Two instances were found that are
likely due to overflow of intermediate results -- HPUX
9 returns an error code for fmod (DBL_MAX, PI) and
QNX 4.24 returns an error for 1dexp (e, 33).

9% were due to a filesystem bug in QNX 4.22, which
incorrectly returned errors for filenames having embed-
ded spaces.

* The remaining 42% were instances in which it was not
obvious whether an error code could reasonably be
required; this was mainly a concern when passing a
pointer to a structure containing garbage data, where
some operating systems (such as SunOS 4.1.3) appar-
ently checked the data for validity, while others did not.
Classifying the Silent failures sampled revealed some

additional software defects that manifested in unusual, but
specified, situations. For instance, POSIX requires int
fdatasynch (int filedes) to return the EBADF
error if filedes is not valid, and if the file is not open
for write [7]. Yet when tested, only one operating system,
Irix 6.2, followed the specification correctly. All other
operating systems which supported the fdatasynch call
did not indicate that an error occurred. POSIX also
specifically allows writes to files past EOF, requiring the
file length to be updated to allow the write [7]; however
only FreeBSD, Linux, and SunOS 4.1.3 returned
successfully after an attempt to write data to a file past its
EOF, while every other implementation returned EBADF.
Manual checking of random samples of operating system
calls indicated the failure rates caused by these problems
ranged from 1% to 3% overall.

A second approach was attempted for detecting Silent
failures based on voting successful returns against Abort

Koopman & DeVale

failures in functions for which no error codes were
returned. To our surprise this was only somewhat effective
at identifying Silent failures, but did turn out to be a fruitful
way to reveal software defects. A relatively small number
(37,434) of test cases generated an Abort failure for some
operating systems, but successfully completed for all other
operating systems. A randomly sampled hand analysis
indicated that this detection mechanism was incorrect
approximately 50% of the time.

Part of the high false alarm rate for this second approach
was due to differing orders for checking arguments among
the various operating systems. For example, writing zero
bytes from a NULL pointer memory location might Abort
if a byte is fetched from memory before checking
remaining length to transfer, or return successfully if length
is checked before touching memory.

The other part of the false alarm rate was apparently due
to programming errors in floating point libraries. For
instance, FreeBSD suffered an Abort failure on both
fabs (DBL_MAX) and fabs (-DBL_MAX).

Figure 2 shows the aggregate results of Silent failures
from multiple version comparisons with error codes
(weighted at 80%) plus Silent failures from multiple
version comparisons with only Abort failures (weighted at
50%). These results are obviously approximated, but do
indicate that Silent errors can be prevalent. With respect to
the earlier discussion of potential AIX Silent errors, it was
found that error checking in other areas apparently made
up for lack of error detection on NULL pointer reads,
giving it a Silent failure rate comparable to several other
systems, including FreeBSD.

5. Multi-version comparison of OS diversity

An additional use for multi-version comparison
techniques is in attempting to quantify the diversity among
OS implementations with respect to exception handling
robustness. Analysis in this section was performed on a
subset of the robustness testing data: 40,619 tests cases on
each of 13 operating systems, for a total of 528,047 test
results in all. Two OSes (QNX 4.22 and Irix 5.3) were
eliminated because they did not support many of the
functions supported by other OSes, and similarly many
functions were eliminated because they were supported by
few OSes. The selected OSes and functions maximize the
number of usable test cases constrained by a requirement
of every test case being supported by all OSes used in the
comparisons.

In Figure 3, the horizontal axis indicates the value of N
for N-way comparisons, from N=1 (data points for 13
possibilities, one for each single OS) through intermediate
values such as 6 (depicting all combinations of 13 OSes
taken 6 at a time), to a single data point for 13-way OS

FTCS-29

0.5

rate), especially taking into
account that the triangle points are

0.45
0.4

A a 168 POSIX Calls
© Only 72 System Calls |

for aggregate behavior of 169
functions that also includes the

0.35

data for the 72 system calls.
For both C library functions

and system calls there is a

o
w

0.25

significant span of robustness
failure rates up through

o
N

0.15

moderately high values of N, as
well as a noticeable decrease in
the lowest possible residual
failure rate for increasing N.

Residual Failure Rate

0.1
0.05

These trends indicate that an
increasing amount of diversity in

exception handling robustness is
available for increasing N. Or, put
another way, Figure 3 suggests

1 2 3 4 5 6 7 8 9

Figure 3. Multi-version comparisons of all combinations of N OS implementations
reveal wide variations in robustness failure rates and exception handling diversity.

comparisons. For each value of N there are two sets of
data: triangles for all 168 calls, and circles for the subset of
72 system calls (excluding C library calls). The data points
for most values of N blend together, but the result is one
that shows the span of effectiveness for various
combinations, with the lowest point being the lowest
possible robustness failure rate for the best possible
hypothetical combination of N OS versions executed back-
to-back (maximum available diversity), and the highest
point being the worst one could do by hypothetically
picking the set of N OS versions with the highest degree of
robustness failure overlap (minimum available diversity).

Thus, in Figure 3 the height of any particular data point
measures the robustness failure rate not detected by any of
the N OS implementations for that point. The span of
points for a particular N value indicates the difference in
diversity among combinations (least diverse being the
highest). The general difference between triangles and
circles indicates differences between aggregate POSIX
calls and a system-call-only subset of the POSIX API
Finally, the downward trend in failure rates as N increases
indicates the additional diversity added by each additional
OS considered in a pool of N OS implementations (i.e.,
removing additional common mode failures for a
hypothetical composite exception detection system).

From Figure 3, one can see that system calls are
generally far more robust than C library calls (except for
the N=1 point for QNX 4.24 at 37.8% robustness failure

Koopman & DeVale

10 11 12 13

that careful selection of N OS
implementations reduces the
common mode robustness failures
observed as N increases.
Furthermore, which N OS
implementations one selects
dramatically affects the degree of
common mode failure observed.

To a degree, one might expect a wide spread of residual
failure rates due to the fact that BSD and System V Unix
implementations have significantly diverged, and that
Linux was specifically developed from scratch to avoid
licensing entanglements. In fact, the data for system calls
suggest that a half-dozen implementations have evolved
significant diversity from each other with respect to system
calls (the bottom-most circle decreases in residual failure
rate significantly through about N=6). Similarly, the fact
that the GNU C libraries and BSD-based libraries were
independently developed helped provide diversity.

However, the potential bad news from a diversity point
of view is that no rwo OS implementations approach the
system call diversity of all 13 OS implementations.
Suppose that one were to, in the best case, select the two
most diverse OS implementations (AIX and FreeBSD,
which also appeared in personal correspondence to have
the most extreme views as to what constituted robustness).
If one were to make that selection with the intent of
avoiding all common-mode OS exception handling failures
among multiple machines running the same application
software, one would only achieve a 9.7% common mode
failure exposure for system calls and a 25.4% exposure for
all calls tested, assuming equal weighting among all
functions. And, if one were to pick any two other OS
implementations, the common mode failure exposure
would be higher. Selecting the best four or five or six OS

FTCS-29

implementations improves the situation to a degree, but
becomes increasingly impractical in a real installation.

An additional conclusion from Figure 3 and other
analysis we have performed is that a significant fraction of
Abort failures come from C library calls, and tend to be
correlated among OS versions. This is perhaps not a
surprise considering that these calls, most notably the
string handling routines, are notoriously susceptible to
memory over-run and pointer value problems, and have an
API definition that does not specifically encourage
robustness. Similarly it is not unreasonable to conjecture
that C library code has been shared and redistributed
largely unchanged, since most OS vendors concentrate on
porting an OS to their hardware and optimizing
performance of system calls rather than the C library
functions. Nonetheless, if one were to presume a high
degree of implementation diversity simply because C
libraries were (presumed to be) independently developed
and came from independent vendors, one would be
mistaken from an exception-handling perspective.

5.1. Frequent sources of robustness failure

Given that robustness failures are prevalent, what might
be fixed to improve them? Source code to most of the
operating systems tested was not available, and manual
examination of available source code to search for root
causes of robustness failures is impractical with such a
large set of experimental data. Therefore, the best that can
be presented is a list of data values that are highly
correlated with robustness failures (Table 1) and functions
that have high robustness failure rates even after 13-way
failure detection comparisons are applied (Table 2).

Table 1: Data types most commonly associated with
abort robustness failures for 15 operating systems.

Percent associated with
Data Value robustness failures

Invalid file pointers 94.0%
(excluding NULL)

NULL file pointers 82.5%

Invalid buffer pointers 49.8%
(excluding NULL)

NULL buffer pointers 46.0%

MININT integers 44.3%

MAXINT integers 36.3%

Table 1 shows that NULL and invalid pointer values are
the most common causes of Abort failures, which is
probably no great surprise. However, minimum and
maximum integer values also seem to be correlated with

Koopman & DeVale

robustness failures, which was not an obvious outcome.

Table 2 shows the sigjmp/longjmp pair high on the
robustness failure rate list for both system calls and C
library calls. Note that Table 2 deals with residual failure
rates after comparisons, and so represents failures that no
OS dealt with gracefully. Beyond that, string functions and
math functions appear on the C library list, but are not the
only culprits.

Table 2: Functions with highest residual failure rates
after 13-way failure detection voting.

System Calls C Library Calls
siglongjmp 66.7% longjmp 100%
sigsetjmp 40.0% strcpy 50%

ctermid 20.0% atan 44.4%
closedir 14.3% frexp 40.0%
readdir 14.3% modf 40.0%
getenv 13.3% setjimp 40.0%
getgrnam 12.5% sprintf 39.8%
getpwnam 12.5% strftime 33.3%
getgrnam 12.5% strncat 29.2%
getcwd 12.5% strcat 28.1%
creat 11.1% printf 25%
execlp 11.1% strncpy 23.3%
execvp 11.1% fabs 22.2%
sigaddset 8.2% tan 22.2%

6. Conclusions

This paper documents the use of multi-version software
comparison techniques in analyzing a set of large, mature,
commercially available software systems. In terms of
robustness assessment, the multi-version approach
permitted identifying Silent failures (failure to indicate the
occurrance of an exceptional condition when one could
have been indicated) with a reasonable degree of accuracy,
but without need to create functional specifications for all
233 functions tested. The result was the discovery of a
normalized Silent robustness failure rate of 6% to 19% for
single-OS tests. Additionally, a multi-version comparison
approach permitted screening out the non-exceptional tests
generated by Ballista robustness testing. An additional,
unexpected, result was finding some bugs (software defects
with respect to required POSIX functionality) on POSIX-
certified, commercial operating systems.

A second approach to using multi-version software
comparisons produced measurements of the diversity of
POSIX operating systems. In particular, measurements
were made for the residual robustness failure rate that
would remain if one were to (hypothetically) combine the

FTCS-29

most graceful exception handling abilities of every one of
N different OS implementations, with the value of N
ranging from one to thirteen. The results were that the core
set of 78 system calls tested were moderately robust and
diverse, but not perfectly so. This result suggests that
system calls have a reasonable level of software diversity
for multiple version purposes, or alternately that a
developer combining techniques already in existing OS
implementations into a single OS might possibly (barring
technical hurdles) improve the robustness that single OS.
However, selecting any pair of OS implementations did
not seem to result in the highest possible degree of
implementation diversity.

The results for multi-version assessment of C library
calls were less promising. C library calls appear to be
significantly less robust on average than OS system calls,
and additionally do not appear to be highly diverse in
implementation. This finding means that presuming that C
library implementations are diverse simply because they
come from different vendors or have been independently
developed is probably not a good idea.

Although the data presented here do not purport to apply
to functional correctness, they do suggest that commercial
off-the-shelf software developed to a particular API might
possibly lack diversity, at least with respect to exception
handling. It seems very likely that some of this lack of
diversity is due to the design of the API itself, but it is
difficult to believe that this is the only factor at work.

The detailed source data used in preparing this paper are
available at http://www.ices.cmu.edu/ballista

7. Acknowledgment

This research was sponsored by DARPA contract
DABT63-96-C-0064, the Ballista project.

8. References

[1] Avizienis, A., "The N-version approach to fault-tolerant soft-
ware", [EEE Trans. on Software Engineering, vol.SE-11, no.12,
1985, p. 1491-501.

[2] Avizienis, A., Gunningberg, P., Kelly, J.P.J., Stringini, L.,
Traverse, PJ., Tso, K.S., Voges, U., “The UCLA DEDIX System:
A Distributed Testbed for Multiple-Version Software”, 15th Fault
Tolerant Computing Symp., 1985, p. 126-134.

[3] Avizienis, A., Lyu, M., Schutz, W., “In Search of Effective
Diversity: A Six-Language Study of Fault-Tolerant Flight Control
Software,” 18th Intl. Symp. on Fault Tolerant Computing, 1988.

[4] Brilliant, S.S., Knight, J.C., Leveson, N.G,, “Analysis of

Faults in an N-Version Software Experiment”, [EEE Trans. on
Sofiware Engineering, vol. 16, no. 2, 1990, pp. 238-47.

Koopman & DeVale

[5] Chen, L., Avizienis, A., “N-Version Programming : A Fault
Tolerance Approach to Reliability of Software Operation,” The
Eighth Intl. Symp. on Fault Tolerant Computing, 1978.

[6] Gersting, J.L., Nist, R.L., Roberts, D.B., Van Valkenburg,
R.L., “A Comparison of Voting Algorithms for N-Version Pro-
gramming,” Proceedings of the twenty-fourth Annual Hawaii Intl.
Conference on System Sciences, vol. 2, 1991, pp. 253-62.

[7] IEEE Standard for Information Technology - Portable Operat-
ing System Interface (POSLX) Part 1: System Application Pro-
gram Interface (API) Amendment 1: Realtime Extension [C
Language] , IEEE Std 1003.1b-1993, IEEE Computer Society,
1994.

[8] Kelly, J.P., Eckhardt, D.E., Vouk, M.A., McAllister, D.F., Cag-
layan, A K., “A Large scale Second Generation Experiment in
Multi-Version Software: Description and Early Results,” Eigh-
teenth Intl. Syposium on Fault Tolerant Computing, 1988.

[9] Knight J.C., Leveson, N.G, St. Jean L.D., "A large scale
experiment in N-version programming", /5th Fault Tolerant
Computing Symp., 1985, 135-139

[10] Knight Leveson, "An empricial suty of failure probabilities
in multi-version software", 16th Intl. Fault Tolerant Computing
Symp., 1986, 165-170

[11]Knight, J.C., Leveson, N.G., “A reply to the criticisms of the
Knight and Leveson experiment”, SIGSOFT Software Engineer-
ing Notes, vol. 15, no.1, 1990, p. 24-35.

[12] Koopman, P., Sung, J., Dingman, C., Siewiorek, D. & Marz,
T., "Comparing Operating Systems Using Robustness Bench-
marks", Proceedings Symp. on Reliable and Distributed Systems,
Durham, NC, Oct. 22-24 1997, pp. 72-79.

[13] Kropp, N., Koopman, P. & Siewiorek, D., "Automated
Robustness Testing of Off-the-Shelf Software Components", 28th
Fault Tolerant Computing Symp., June 23-25, 1998.

[14] Lorczak, P.R., Caglayan, A.K., Eckhardt, D.E., “A Theoreti-
cal Investigation of Generalized Voters for Redundant Systems,”
19th Intl. Symp. on Fault Tolerant Computing, 1989.

[15] Lyu, M.R., “Software Reliability Measurements in N-Ver-
sion Software Execution Environment,” Proceedings of the Third
Intl. Symp. on Software Reliability and Engineering, 1992.

[16] McAllister, D.F., Sun, C., Vouk, M.A., “Reliability of Voting
in Fault-Tolerant Software Systems for Small Output-Spaces,”
IEEE Trans. on Reliability, vol. 39, no. 5, 1990, pp. 524-34.

[17] Vouk, M.A., McAllister, D.F., Caglayan, A.K., Walker, J.L.,
Eckhardt, D.E., “Analysis of Faults Detected in a Large-Scale
Multi-Version Software Development Experiment,” Proceedings
of the Ninth Digital Avionics Systems Conference, 1990.

FTCS-29

