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Abstract
Mission-critical system designers may have to use a

Commercial  Off-The-Shelf  (COTS)  approach to reduce
costs and shorten development time, even though COTS
software components may not specifically be designed for
robust operation. Automated testing can assess component
robustness without sacrificing the advantages of a COTS
approach. This paper describes the Ballista methodology
for scalable, portable, automated robustness testing of
component interfaces.  An object-oriented approach based
on parameter data types rather than component
functionality essentially eliminates the need for
funct ion-specif ic test scaffolding. A ful l-scale
implementation that automatically tests the robustness of
233 operating system software components has been ported
to ten POSIX systems. Between 42% and 63% of
components tested had robustness problems, with a
normalized failure rate ranging from 10% to 23% of tests
conducted. Robustness testing could be used by developers
to measure and improve robustness, or by consumers to
compare the robustness of competing COTS component
libraries.

1. Introduction

Mission-critical system designers are being pressed to
use a Commercial  Off-The-Shelf (COTS) approach to
reduce costs and shorten development time. Even though
using available COTS components may be required for
business success, there is a risk that resultant systems may
not be robust. For example,  a component originally
intended for use in a desktop computing environment may
have been developed with robustness as only a secondary
goal because of the relatively low cost of a system crash and
a presumed ability of operators to work around problems.

Mission-critical applications may not be as forgiving of
robustness problems as traditional desktop applications.
Even worse, components which are specifically designed
for mission-critical applications may prove to have
problems with robustness if reused in a different context.

For example, a root cause of the loss of Ariane 5 flight 501
was the reuse of Ariane 4 inertial navigation software, which
proved to have robustness problems when operating under
the different flight conditions encountered on Ariane 5. [1]
With the current trend toward an increased use of COTS
components, opportunities for bad data values to be
circulated within a system are likely to multiply, increasing
the importance of gracefully dealing with such exceptional
conditions.

The robustness of a software component is the degree
to which it functions correctly in the presence of exceptional
inputs or stressful environmental conditions. [2] In some
mature test suites so-called  “dirty” tests  that  measure
responses to invalid conditions can outnumber tests for
correct conditions by a ratio of 4:1 or 5:1. [3] The focus of
this paper is the Ballista methodology for automatic creation
and execution of a portion of these numerous invalid input
robustness tests — in particular tests designed to detect
crashes and hangs caused by invalid inputs to function calls.
The results presented indicate that robustness
vulnerabilities to invalid inputs are common in at least one
class of mature COTS software components.

The goal of Ballista is to automatically test for and
harden  against software  component failures  caused  by
exceptional inputs. In this first phase of the project the
emphasis is on testing, with creation of protective hardening
“software wrappers” to be done in the future. The approach
presented here has the following benefits:
• Only a description of the component interface in terms

of parameters and data types is required. COTS or legacy
software may not come with complete function
specifications or perhaps even source code, but these are
not required by the Ballista robustness testing approach.

• Creation and execution of individual tests is automated,
and the investment in creating test database information
is prorated across many modules. In  particular, no
per-module test scaffolding, script, or other driver
program need be written.

• The test results are highly repeatable, and permit isolating
individual test cases for use in bug reports or creating
robustness hardening wrappers.
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The Ballista approach is intended to be generically
applicable to a wide range of application areas. In order to
demonstrate feasibility on a full-scale example, automated
robustness testing has been performed on several
implementations of the POSIX operating system C
language Application Programming Interface (API). [4] A
demonstration of this system is available on the World Wide
Web athttp://www.ices.cmu.edu/ballista

In the balance of this paper, Section 2 describes the
testing methodology and how it relates to previous work in
the areas of software testing and fault injection. Section 3
describes the implementation, while Section 4 describes
experimental results  for operating system  (OS) testing.
Section 5 evaluates the effectiveness of the methodology,
and Section 6 provides conclusions.

2. Methodology

A software component, for our purposes, is any piece
of software that can be invoked as a procedure, function, or
method with a non-null set of input parameters. While that
is not a universal definition of all software interfaces, it is
sufficiently broad to be of interest. In the Ballista approach,
robustness testing of such a software component (a Module
under Test, orMuT) consists of establishing an initial system
state, executing a  single  call to  the  MuT,  determining
whether a robustness problem occurred, and then restoring
system state to pre-test conditions in preparation for the next
test. Although executing combinations of calls to one or
more MuTs during a test can be useful in some situations,
we have found that even the simple approach of testing a
single call at a time provides a rich set of tests, and uncovers
a significant number of robustness problems.

Ballista draws upon  ideas from the areas  of both
software testing and fault injection. A key idea is the use of
an object-oriented approach driven by parameter list data
type information  to  achieve scalability and  automated
initialization of system state for each test case.

2.1. Use of software testing concepts

Software testing  for  the  purpose of
determining reliability is often carried out
by exercising a software system under
representative workload conditions and
measuring failure rates. In addition,
emphasis is placed on code coverage as a
way of assessing whether a module has been
thoroughly tested. [5] Unfortunately,
traditional software reliability testing may
not uncover robustness problems that occur
because of unexpected input values
generated  by bugs in  other  modules,  or

because of an encounter with atypical operating conditions.

Structural, or white-box, testing techniques are useful
for attaining high test coverage of programs. But they
typically focus on the control flow of a program rather than
handling of exceptional data values. For example,
structural testing ascertains whether code designed to detect
invalid data is executed by a test suite, but may not detect if
such a test is missing altogether. Additionally, structural
testing typically requires access to source code, which may
be unavailable when using COTS software components. A
complementary approach is black-box testing, also called
behavioral testing. [3] Black-box testing techniques are
designed to demonstrate correct response to various input
values regardless of the software implementation, and seem
more appropriate for robustness testing.

Two types of black-box testing are particularly useful
as starting points for robustness testing: domain testing and
syntax testing. Domain testing locates and probes points
around extrema and discontinuities in the input domain.
Syntax testing constructs character strings that are designed
to test the robustness of string lexing and parsing systems.
Both types of testing are among the approaches used in
Ballista as described in Section 3 on implementation.

Automatically generating software tests requires three
things: a MuT, a machine-understandable specification of
correct behavior, and an automatic way to compare results
of executing the MuT with the specification. Unfortunately,
obtaining or creating a behavioral specification for a COTS
or legacy software component is often impractical due to
unavailability or cost.

Fortunately, robustness testing need not use a detailed
behavioral specification.    Instead, the almost trivial
specification of “doesn’t  crash, doesn’t hang” suffices.
Determining whether a MuT meets this specification is
straightforward — the operating system can be queried to
see if a test program terminates abnormally, and a watchdog
timer can be used to detect hangs. Thus, robustness testing
can be performed on modules (that don’t intentionally crash
or hang) in the absence of a behavioral specification.

INPUT
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INVALID
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SHOULD
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Figure 1. Ballista performs fault injection at the API level using

combinations of valid and exceptional inputs.

Automated Robustness Testing of Kropp, Koopman & Siewiorek
Off-the-Shelf Software Components

© Copyright 1998, IEEE 2 Published in the Proceedings of FTCS'98
June 23-25, 1998 in Munich, Germany



Any existing specification for a MuT might define
inputs as falling into three categories: valid inputs, inputs
which are specified to be handled as exceptions, and inputs
for which the behavior is unspecified (Figure 1). Ballista
testing, because it  is not  concerned  with  the  specified
behavior, collapses the unspecified and specified
exceptional inputs into a single invalid input space. The
robustness of the responses of the MuT can be characterized
as robust (neither crashes nor hangs, but is not necessarily
correct from a detailed behavioral view), having a
reproducible failure (a crash or hang that is consistently
reproduced), and an unreproducible failure (a robustness
failure that is not readily reproducible). The objective of
Ballista is to identify reproducible failures.

2.2. Use of fault injection concepts

Fault injection is a technique for evaluating robustness
by artificially inducing a fault and observing the system’s
response. Some fault injection techniques require
special-purpose hardware (e.g., FTAPE [6]), and thus are
not portable across commercially available systems. Even
some Software-Implemented Fault Injection (SWIFI)
approaches have exploited specific features of a particular
hardware platform, reducing portability (e.g., FIAT [7] and
Ferrari [8]). Code mutation (e.g., [9]) is a portable software
testing technique that performs fault injection on source
code, but is in general more suitable for test set coverage
analysis than robustness testing.

Two portable SWIFI approaches are specifically
targeted at testing the robustness of software components.
The University of Wisconsin Fuzz approach [10] generates
a random input stream to various Unix programs and detects
crashes  and hangs. The Carnegie Mellon robustness
benchmarking approach [11][12] tests individual system
calls with specific input
values to detect crashes and
hangs. Both techniques focus
on robustness problems that
can occur due to faulty data
being passed among software
modules.

The Ballista approach is
a generalization of previous
Carnegie Mellon work, and
performs fault injection at
the API level. Injection is
performed by passing
combinations of acceptable
and exceptional inputs as a
parameter list to the MuT via
an ordinary function call. For
example, a file handle to a file

opened for reading might be passed to a file write function.

2.3. Elimination of per-function scaffolding

A key idea of Ballista is that tests are based on the
values of parameters and not on the behavioral details of the
MuT.    In order to accomplish this, Ballista uses an
objected-oriented approach to define test cases based on the
data types of the parameters for the MuT. The set of test
cases used to test a MuT is completely determined by the
data types of the parameter list of the MuT and does not
depend on a behavioral specification.

Figure 2 shows the Ballista approach to generating test
cases for a MuT. Before conducting testing, a set of test
values must be created for each data type used in the MuT.
For example, if one or more modules to be tested require an
integer data type as an input parameter, test values must be
created for testing integers. Values to test integers might
include 0,  1, and  MAXINT  (maximum integer value).
Additionally, if a pointer data type is used within the MuT,
values of NULL and -1, among others, might be used. A
module cannot be tested until test values are created for each
of its parameter data types.   Automatic testing generates
module test cases by drawing from pools of defined test
values.

Each  set  of test values (one set per data type) is
implemented as a testing object having a pair of constructor
and destructor functions for each defined test value.
Instantiation of a testing object (which includes selecting a
test value from the list of available values) executes the
appropriate constructor function that builds any required
testing infrastructure.    For example, an integer test
constructor would simply return a particular integer value.
But, a file descriptor test constructor might create a file,
place information in it, set appropriate access permissions,

API

TESTING
OBJECTS

module_name (integer parameter, file handle parameter )

module_name <zero, open_for_write>

INTEGER
TEST

OBJECT
...

0
1
-1
...

OPEN FOR READ
OPEN FOR WRITE

...

TEST
VALUES

TEST CASE
(a tuple of

specific
test values)

NULL STRING
LONG STRING

...

FILE HANDLE
TEST

OBJECT

STRING
TEST

OBJECT

Figure 2. Refinement of a module within an API into a particular test case.

Automated Robustness Testing of Kropp, Koopman & Siewiorek
Off-the-Shelf Software Components

© Copyright 1998, IEEE 3 Published in the Proceedings of FTCS'98
June 23-25, 1998 in Munich, Germany



then open the file requesting read permission. An example
of a test constructor to create a file open for read is shown
in Figure 3.

When a testing object is discarded, the corresponding
destructor for that test case performs appropriate actions to
free, remove, or otherwise undo whatever system state may
remain in place after the MuT has executed. For example,
a destructor for an integer value does nothing. On the other
hand, a destructor for a file descriptor might ensure that a
file created by the constructor is deleted.

A natural result of defining test cases by objects based
on data type instead of by behavior is that large numbers of
test cases can be generated for functions that have multiple
parameters in their input lists. Combinations of parameter
test values are tested exhaustively by nested iteration. For
example, testing a three-parameter function is illustrated in
the simplified pseudocode shown in Figure 4. The code is
automatically generated given just a function name and a
typed parameter list.  In actual testing a separate process is
spawned for each test case to facilitate failure detection.

An important benefit of the parameter-based test case
generation approach used by Ballista is that no per-function
test scaffolding is necessary. In the pseudocode in Figure 4
any test taking the parameter types(fd, buf, len)
could be tested simply by changing the “read ” to some
other function name. All test scaffolding creation is both
independent of the behavior of the function being tested, and
completely encapsulated in the testing objects.

Ballista is related in some respects to other automated
combinational testing approaches such as AETG [13] and
TOFU [14] in that test cases are organized by parameter
fields and  then  combined  to  create  tests of functions.
However,  the Ballista approach does not require the
addition of any information specific to the function under
test, such as relations among fields and unallowed tests
required by AETG, and the further addition of interaction
weightings  by TOFU. While  such information  about
parameters could be added to the Ballista approach, doing
so is not required to attain effective operation. Additionally,
approaches that require weighted relationships may not be

appropriate in robustness testing, where one is testing the
behavior of software in exceptional operating conditions.
For example, one could argue that it is the interactions
programmers and testers didn’t think important or possible
(and thus are exceptional) that are precisely the ones that
Ballista should hope to find.

2.4. Robustness measurement

The response of the MuT is measured in terms of the
CRASH scale. [14] In this scale the response lies in one of
six categories: Catastrophic (the system crashes or hangs),
Restart (the test process hangs), Abort (the test process
terminates abnormally,i.e. “core dump”), Silent (the test
process exits without an error code, but one should have
been returned), Hindering (the test process exits with an
error code not relevant to the situation), and Pass (the
module exits properly, possibly with an appropriate error
code). Silent and Hindering failures are currently not found
by Ballista. While it would be desirable to extend Ballista
to include Silent and Hindering failures, it is unclear at this
time how to do so in a scalable fashion without requiring
detailed information about each function tested.

3. Implementation

The Ballista approach to robustness testing has been
implemented  for  a  set  of 233  POSIX calls,  including
real-time extensions for C. All system calls defined in the
IEEE 1003.1b standard [4] (“POSIX.1b”, or “POSIX with

case FD_OPEN_RD:
create_file(fd_filename);
fd_tempfd = open(fd_filename, O_RDONLY);
*param = fd_tempfd;
break;

Figure 3. Code for an example constructor.

fd_filename is a standard test file

name used by all constructors for file descriptors,

*param is the parameter used in the subsequent

call to the MuT, and the variable fd_tempfd is

used later by the destructor.

/* test function read(fd, buf, len) */
foreach ( fd_case )
{ foreach ( buf_case )

{ foreach ( len_case )
{ /* constructors create instances */

fd_test fd(fd_case);
buf_test buf(buf_case);
len_test len(len_case);

/* test performed */
puts(“starting test...”);
read(fd, buf, len);
puts(“...test completed”);

/*clean up by calling destructors*/
~fd();  ~buf();  ~len();

} } }

Figure 4. Example code for executing all tests for

the function read. In each iteration

constructors create system state, the test is

executed, and destructors restore system state to

pre-test conditions.
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realtime extensions”) were tested except for calls that take
no arguments, such asgetpid ; calls that do not return,
such asexit ; and calls that intentionally send signals, such
as kill .    POSIX calls were chosen as an example
application because they encompass a reasonably complex
set of functionality, and are widely available in multiple
mature commercial implementations.

3.1. Test value database

Table 1 shows the 20 data types which were necessary
for testing the 233 POSIX calls. The code for the 190 test
values across the 20 data types typically
totals between one and fifteen lines of C
code per test value. Current test values
were chosen based on the Ball ista
programming team’s experience with
software defects and knowledge of
compiler and operating system behavior.

Testing objects fall into the categories
of base type objects and specialized objects.
The only base type objects required to test
the POSIX functions are integers, floats,
and pointers to memory space. Test values
for these data types include:
• Integer data type: 0, 1, -1, MAXINT,

-MAXINT, selected powers of two,
powers of two minus one, and powers of
two plus one.

• Float data type: 0, 1, -1, +/-DBL_MIN,
+/-DBL_MAX, pi, ande

• Pointer data type: NULL, -1 (cast to a
pointer),  pointer tofree’ d memory,
and pointers tomalloc’ ed buffers of
various powers of two in size including
231 bytes ( i f that much can be
successfully allocated bymalloc ).
Some pointer values are set near the end
of allocated memory to test the effects of
accessing  memory on  virtual memory
pages just past valid addresses.

Specialized testing objects build upon
base type test values, but create and
initialize data structures or other system
state such as files. Some examples include:
• String data type (based on the pointer

base type): includes NULL, -1 (cast to a
pointer), pointer to an empty string, a
string as large as a virtual memory page,
a string 64K bytes in length, a string
having a mixture of various characters, a
string with pernicious file modes, and a
string with a pernicious printf format.

• File descriptor (based on integer base type): includes -1;
MAXINT; and various descriptors: to a file open for
reading, to a file open for writing, to a file whose offset
is set to end of file, to an empty file, and to a file deleted
after the file descriptor was assigned.

In all cases it is desired to include test values that
encompass both valid and exceptional values for their use
in the POSIX API so that one correctly handled exception
would not mask other incorrectly handled exceptions. For
example, in several operating systems a buffer length of zero
causes thewrite function to return normally, regardless
of the  values of the  other parameters, whereas calling

write with a valid non-zero length and an
invalid NULL buffer pointer causes a
segmentation violation. Without the
inclusion of the valid non-zero value in the
length data type, this  robustness  failure
would not be uncovered.

The  above  test  values by no  means
represent al l possible exceptional
conditions. Future work will include
surveying published lists of test values and
studying ways to automate the exploration
of the exceptional input space. Nonetheless,
experimental results show that even these
relatively simple test values expose a
significant number of robustness problems
with mature software components.

A special feature of the test value
database is that it is organized for automatic
extraction of single-test-case programs
using a set of shell scripts. In other words,
the various constructors and destructors for
the particular test values of interest can be
automatically extracted  and  placed  in  a
single program that contains information for
producing exactly one test case. This ability
makes it easier to reproduce a robustness
failure in isolation, and facilitates creation
of “bug” reports.

3.2. Test generation

The simplest Ballista operating mode
generates an exhaustive set of test cases that
spans the cross-product of all test values for
each module input parameter. For example,
the function read would combine  (per
Table 1) 13 test values for the file descriptor,
15 test values for the buffer, and 16 test
values for the integer length parameter, for
a total of 13x15x16=3120 test cases.

Data Type
# of

Funcs.
# Test
Values

string 71 9

buffer 63 15

integer 55 16

bit masks 35 4

file name 32 9

file

descriptor
27 13

file pointer 25 11

float 22 9

process ID 13 9

file mode 10 7

semaphore 7 8

AIO cntrl

block
6 20

message

queue
6 6

file open

flags
6 9

signal set 5 7

simplified

int
4 11

pointer to

int
3 6

directory

pointer
3 7

timeout 3 5

size 2 9

Table 1. Data types used

in POSIX testing.

Only 20 data types sufficed

to test 233 POSIX functions.
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Thus, the number of test cases for a particular MuT is
determined by the number and type of input parameters and
is exponential with the number of parameters. For most
functions the number of tests is less than 5000, which
corresponds to less than a minute of test time. However, for
seven POSIX functions the number of tests is larger than
5000, so combinations of parameter test values are
(deterministically)  pseudo-randomly selected  up  to  an
arbitrary limit of 5000 test cases. A comparison of the
results of pseudo-random sampling to actual exhaustive
testing showed that the results can be expected to be very
close (within less than a one percentage point difference)
with respect to failure rate information. In the future a more
sophisticated sampling approach such as concentrating on
varying pairs and triples of parameters (e.g., based on testing
pairs and triples of parameters as in [13]) could be used,
although the pseudo-random approach appears to suffice for
current purposes.

4. Experimental Results

The  Ballista  POSIX robustness test suite has been
ported to the ten operating systems listed in Table 2 with no
code modifications. On each OS as many of the 233 POSIX
calls were tested as were provided by the vendor. The
compiler and libraries used were those supplied by the
system vendor (in the case of Linux and LynxOS these were
GNU C tools).

4.1. Results of testing POSIX operating systems

Table 2 shows that the combinational use of test values
over a number of functions produced a reasonably large
number of tests, ranging from 92,658 for the two OSs that
supported all 233 POSIX functions to 54,996 for HP-UX.
One function in Irix, munmap,  suffered  Catastrophic
failures causing a system crash that required manual
rebooting. Themmapfunction in HP-UX caused a system
panic followed by automatic reboot. Similarly the
setpgid function in LynxOS caused a system crash. All
OSs had relatively few Restart failures (task hangs).

The main trend to notice in Table 2 is that only 37% to
58% of functions exhibited no robustness failures under
testing. This indicates that, even in the best case, about half
the functions had at least one robustness failure. (Ballista
does not currently test for Silent or Hindering failures, but
these might be present in functions that are indicated to be
failure-free in Table 2.)

4.2. Normalizing robustness test results

While it is simple to list the number of test cases that
produced different types of robustness failures, it is difficult
to  draw conclusions from such a listing  because some
functions have far more tests than other functions as a result
of the combinatorial explosion of test cases with
multi-parametered functions. Instead,  the number  of
failures are reported as a percentage of tests on a
per-function basis. Figure 5 graphs the per-function percent
of failed tests cases for the 233 functions tested in Digital

System

POSIX
Functions
Tested

Fns. with
Catastr.
Failures

Fns. with
Restart
Failures

Fns. with
Abort

Failures

Fns. with
No

Failures
Number
of Tests

Abort
Failures

Restart
Failures

Normalized
Failure
Rate

AIX 4.1 186 0 4 77 108 (58%) 64,009 11,559 13 9.99%

Digital Unix 4.0 233 0 2 124 109 (47%) 92,658 18,316 17 15.07%

FreeBSD 2.2.5 175 0 4 98 77 (44%) 57,755 14,794 83 20.28%

HP-UX B.10.20 186 1 2 93 92 (49%) 54,996 10.717 7 13.05%

Irix 6.2 226 1 0 94 131 (58%) 91,470 15,086 0 12.62%

Linux 2.0.18 190 0 3 86 104 (55%) 64,513 11,986 9 12.54%

LynxOS 2.4.0 223 1 0 108 114 (51%) 76,462 14,612 0 11.89%

NetBSD 1.3 182 0 4 99 83 (46%) 60,627 14,904 49 16.39%

QNX 4.24 206 0 4 127 77 (37%) 74,893 22,265 655 22.69%

SunOS 5.5 233 0 2 103 129 (55%) 92,658 15,376 28 14.55%

Table 2. Summary of robustness testing results. The number of test cases and functions tested varies

with the fraction of POSIX calls supported by the system. Some functions have multiple types of

failures. Catastrophic failures are not included in failure rate because of difficulties retaining recorded data

across system crashes.
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Unix 4.0. Providing normalized failure rates conveys a
sense  of the  probability of failure  of a function when
presented with exceptional inputs,  independent of  the
varying number of test cases executed on each function.

The two functions in Figure 5 with 100% failure rates
are longjmp andsiglongjmp , which perform control
flow transfers to a target address. These functions are not
required by the POSIX standard to recover from exceptional
target addresses, and it is easy to see why such a function
would abort on almost any invalid address provided to it.
(Nonetheless, one could envision a version of this function
that recovered from such a situation.) On the other hand,

most of the remaining functions could plausibly return error
codes rather than failing for a broad range of exceptional
inputs.

4.3. Comparing results among implementations

One possible use for robustness testing results is to
compare different implementations of the same API. For
example, one might be deciding which off-the-shelf
operating system to use, and it might be useful to compare
the robustness results for different operating systems. (It
should be realized, however, that these results measure only

233 POSIX FUNCTIONS (alphabetical by function name)

P
er

ce
nt

of
Te

st
s

F
ai

lin
g,

 p
er

fu
nc

tio
n

ca
ll

ab
s

ai
o_

er
ro

r
ai

o_
w

rit
e

at
an at
ol

cf
ge

to
sp

ee
d

ch
m

od

cl
oc

k_
ge

tti
m

e
co

s
ct

im
e

ex
ec

le
ex

ec
vp

fc
lo

se fe
of

fg
et

s
fo

pe
n

fp
ut

s
fre

xp
fs

yn
c

ge
tc

ge
tg

rn
amge
ts

is
at

ty
is

lo
w

er
is

up
pe

r
lio

_l
is

tio
lo

ng
jm

p
m

kf
ifo

m
m

ap
m

q_
ge

ta
ttr

m
q_

se
nd

m
un

lo
ck

op
en

di
r

po
w

pu
ts

re
m

ov
e

rm
di

r

sc
he

d_
ge

tp
ar

am

sc
he

d_
se

ts
ch

ed
u

se
m

_i
ni

t

se
m

_u
nl

in
k

se
tjm

p
sh

m
_o

pe
n

si
gd

el
se

t
si

gl
on

gj
m

p

si
gt

im
ed

w
ai

t
sq

rt
st

rc
at

st
rc

sp
n

st
rn

cm
p

st
rs

pn ta
n

tc
flu

sh
tc

se
ta

ttr

tim
er

_d
el

et
e

tim
es

tty
na

m
e

un
lin

k
w

rit
e

Ballista Digital Unix 4.0 Robustness Failures
92659 tests of 233 calls
18316 Aborts found in 124 calls 17 Restarts found in 2 calls

Average Failure Rate 15.07%
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Figure 5. Normalized failure rates for 233 POSIX functions on Digital Unix 4.0.
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one aspect of robustness, and do not take into account
system-level robustness architectures that might adequately
deal with function-call level robustness failures.)

Figure 6 shows normalized failure rates for the ten OS
implementations tested. Each failure rate is the arithmetic
mean of the normalized failure rates for each function,
including both functions that fail and functions that are
failure-free. Thus, it provides the notion of an unweighted
exposure to robustness failures on a per-call basis. So, the
normalized  failure rates  represent  a  failure probability
metric for an OS implementation assuming a flat input
distribution selected from the Ballista test values. As such,
they are probably most useful as relative measures of the
robustness of an entire API. If one particular application or
set of applications is to be used with the API, it might be
better to weigh the failure rates according to the frequency
of use of each function call — but applications may vary so
widely in their use of POSIX calls that it seems
inappropriate  to  attempt  such  a  weighting  for generic
robustness failure results such as those presented here.

It is important to note that the results do not purport to
report  the number of software  defects (“bugs”) in  the
modules that have been tested. Rather, they report the
number of opportunities for eliciting faulty responses due
to one or more robustness problems within the software
being tested. From a user’s perspective it is not really
important how many problems are within a piece of COTS
software if the number is other than zero. What is important

is the likelihood of triggering a failure response due to such
a robustness problem.

5. Generic applicability of the methodology

The successful experience of using the Ballista
methodology to test implementations of the POSIX API
suggests that it may be a useful technique for robustness
testing of generic  COTS  software  modules. Different
aspects of the Ballista methodology that are important for
generic applicability include: scalability, portability, cost of
implementation, and effectiveness.

5.1. Scalability

Testing a new software module with Ballista often
incurs no incremental development cost. In cases where the
data types used by a new software module are already
included in the test database, testing is accomplished simply
by defining the interface to the module in terms of data types
and running tests. For example, once test values for a file
descriptor, buffer, and length are created to enable testing
the functionread , other functions such aswrite , dup ,
and close can  be tested  using  the same data types.
Furthermore, the data types for buffer and length would
have already been defined if these functions were tested
after tests had been created for functions such asmemcpy
which have nothing to do with the file system. Even when

data types are not available
i t may be possible to
substitute a  more  generic
data type or base data type
for an initial but limited
assessment (for example, a
generic memory pointer
may be somewhat useful for
testing a pointer to a special
data structure).

The thoroughness of
testing is enhanced by the
combinatorial aspect of
breaking test cases down by
data type. Test ing
combinations of data types
is performed automatically,
generat ing potential ly
thousands of dist inct
composite tests, but
requiring only up to a dozen
or  so specifically defined
test values for each data
type. Although the details
are beyond the scope of this

Ballista Robustness Tests -- 233 POSIX Function Calls
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Figure 6. Normalized failure rates for ten POSIX operating systems. Aggregate

failure rates range from a low of 9.99% for AIX to a high of 22.69% for

QNX. The figures were obtained by taking the arithmetic mean of the percentage

of test cases resulting in failure across all the functions tested on each particular

operating system. Three implementations each had one function that caused

catastrophic failures — an OS crash from user mode.
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paper, the experimental data demonstrate that in a number
of instances the sweeping of the search space with this
combinatorial testing finds robustness failures that would
have been missed with simpler single-parameter or
double-parameter search strategies.

Finally, the number of tests to be run can be limited
using pseudo-random sampling (or, if necessary, other more
sophisticated techniques such as pair-wise testing as
mentioned earlier). Thus, the execution time of testing a
module can be kept low even with a large search space as
long  as a  statistical  sampling of behavior is sufficient.
Testing of the POSIX API takes approximately three hours
on a workstation for the data presented in this paper.

5.2. Portability

The Ballista approach has proven portable across
platforms, and promises to be portable across applications.
The Ball ista tests have been ported to ten
processor/operating system pairs. This demonstrates that
high-level robustness testing can be conducted without any
hardware or operating system modifications. Furthermore,
the  use of normalized failure reporting supports direct
comparisons among different implementations of an API
executing on different platforms.

In a somewhat different sense, Ballista seems to be
portable across different applications. The POSIX API
encompasses file handling, string handling,  I/O,  task
handling, and even mathematical functions. No changes or
exceptions to the Ballista  approach  were  necessary in
spanning this large range of functionality, so it seems likely
that Ballista will be useful for a significant number of other
applications as well. This claim of portability is further
supported by initial experiences in applying Ballista to a
high-level simulation backplane API, although it is too early
to make definitive statements about that application.

5.3. Testing cost

One of the biggest unknowns when embarking upon a
full-scale implementation of the Ballista methodology was
the amount of test scaffolding that would have to be erected
for each function tested. In the worst case, special-purpose
code would have been necessary for each of the 233 POSIX
functions tested. If that had been the case, it would have
resulted in a  significant  cost for constructing  tests for
automatic execution (a testing cost linear with the number
of modules to be tested).

However, the adoption of an object-oriented approach
based on data type yielded an expense for creating test cases
that was sublinear with the number of modules tested. The
key observation is that in a typical program there are fewer
data types than functions — the same data types are used

over and over when creating function declarations. In the
case of POSIX calls, only 20 data types were used by 233
functions, so the effort in creating the test suite was driven
by the 20 data types, not the number of functions.

Although we are just starting to apply the Ballista
testing approach to an object-oriented API, it seems likely
that it will be successful there as well. The effort involved
in preparing for automated testing should be proportional to
the number of object classes (data types) rather than the
number of methods within each class. In fact, one could
envision robustness testing information being added as a
standard part of programming practice when creating a new
class, just as debugging print statements might be added.
Thus, a transition to object-oriented programming should
not adversely affect the cost and effectiveness of the Ballista
testing methodology.

5.4. Effectiveness and system state

The Ballista testing fault model is fairly simplistic:
single function calls that result in a crash or hang. It
specifically does not encompass sequences of calls.
Nonetheless, it is sufficient to uncover a significant number
of  robustness  failures. Part  of this  may be that such
problems are unexpectedly easy to uncover, but part of it
may also be that the object-oriented testing approach is more
powerful than it appears upon first thought.

In particular, a significant amount of system state can
be set by the constructor for each test value. For example,
a file descriptor test value might create a particular file with
associated permissions, access mode, and contents with its
constructor (and, erase the file with its destructor). Thus, a
single test case can replace a sequence of tests that would
otherwise have to be executed to create and test a function
executed in the context of a particular system state. In other
words, the end effect of a series of calls to achieve a given
system state can be simulated by a constructor that in effect
jumps directly to a desired system state without need for an
explicit sequence of calls in the form of per-function test
scaffolding.

A high emphasis has been placed on reproducibility
within Ballista. In essentially every case checked, it was
found that extracting a single test case into a standalone test
program leads to a reproduction of robustness failures. In a
few cases having to do with the location of buffers the failure
is reproducible only by executing a single test case within
the testing harness (but, is reproducible in the harness and
presumably has to do with the details of how data structures
have been allocated in memory).

The only situation in which Ballista results have been
found to lack reproducibility is in Catastrophic failures
(complete system crashes, not just single-task crashes). On
Irix 6.2, system crashes were caused by the execution of a
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single function call. On Digital Unix 3.2 with an external
swap partition mounted, it appeared that a succession of two
or three test cases could produce a system crash from the
functionmq_receive , probably having to do either with
internal operating system state being damaged by one call
resulting in the crash of a second call, or with a time-delayed
manifestation of the error. In all cases, however, robustness
failures were reproducible by rerunning a few tests within
the  Ballista  test harness, and could  be recreated  under
varying system loads including otherwise idle systems.

The current state of Ballista testing is that it searches
for robustness faults using heuristically created test cases.
Future work will include both random and patterned
coverage of the entire function input space in order to
produce better information about the size and shape of input
regions producing error responses, and to generate
statistical information about test coverage. It is not the goal
of robustness testing to predict software failure rates under
normal operating conditions. Rather, the goal is to find
failures caused by exceptional situations, which may
correspond  to  a lack of robustness in  the  face of the
unexpected.

6. Conclusions

The Ballista testing methodology can automatically
assess the robustness of software components to exceptional
input parameter values. Data taken on 233 function calls
from the POSIX API demonstrate that approximately half
the functions tested exhibited robustness failures.
Additionally, a significant fraction of tests ranging from a
low of 9.99% on AIX to a high of 22.69% on QNX resulted
in robustness failures.

More important than the particulars of the OS tests
executed are the results of using the Ballista testing
methodology on a full-size application. The Ballista
methodology was found to be inexpensive to implement
because test database development effort was proportional
to the number of data types (20 data types) instead of the
number of functions tested (233 functions) or the number of
tests executed (up to 92,659 tests). The testing technique
was demonstrated to  be portable  across  systems while
requiring no special-purpose fault injection support, and the
experience suggests that is should be applicable to other
significant APIs.

A specific advantage of the Ballista approach is the
ability to set a rich system state before executing a test case,
obviating the need for sequences of tests to produce a
significant number of robustness failures.

Future work on Ballista will include increasing the
number and variety of test values and data types supported,
adding automatic generation of patterned and random tests

in addition to the current heuristic-based  testing, and
applying the testing methodology to other application areas.
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