18734 Recitation

Basic Probability Theory
Laplace Mechanism

Definition of Probability

- Experiment: toss a coin twice
- Sample space: possible outcomes of an experiment
 - S = {HH, HT, TH, TT}
- Event: a subset of possible outcomes
 - A={HH}, B={HT, TH}, C={TT}
- Probability of an event: an number assigned to an event Pr(A)
 - Axiom 1: $Pr(A) \ge 0$
 - Axiom 2: Pr(S) = 1
 - Axiom 3: For every sequence of disjoint events

$$\Pr(\bigcup_{i} A_{i}) = \sum_{i} \Pr(A_{i})$$

Slide: Rong Jin

Joint Probability

- For events A and B, joint probability Pr(A∩B) stands for the probability that both events happen.
- Example: A={HH}, B={HT, TH}, what is the joint probability Pr(A∩B)?

Slide: Rong Jin

Conditional Probability

If A and B are events with Pr(A) > 0, the
conditional probability of B given A is

$$Pr(B|A) = Pr(A \cap B)/Pr(A)$$

Slide: Rong Jin

Random Variable (RV)

- A random variable X is a function from the sample space to a real number
- X: {HH} -> 2; {HT, TH} -> 1; {TT} -> 0
- Pr(X=0) = Pr(C), where C = {TT}
- A discrete RV takes on finite number of values
- A continuous RV can take an uncountable number of values

Discrete RV

Probability Mass Function (PMF) p_x gives the probability that X will take on a particular value

•
$$p_X(x) = Pr(X=x)$$

•
$$\sum_i p_X(x_i) = 1$$

Continuous RV

• Probability Density Function (PDF) f_X is a non-negative function such that

$$Pr(a <= X <= b) = \int_a^b f_X(x) dx$$

• The integral from $-\infty$ to $+\infty$ is 1

• Pr(X=a) = 0

Probability Distribution

 A distribution assigns a probability to each event in the sample space

Discrete Uniform Distribution

Continuous Uniform Distribution

Laplace Distribution

$$PDF = \frac{1}{2b}exp(-\frac{|y-\mu|}{b})$$

Source: Wikipedia

Laplace Distribution

ightharpoonup Laplace distribution Lap (λ) has density

$$h(y) \propto e^{-|y|/\lambda}$$

Changing one point translates curve

Change of notation from previous slide:

$$\mu \rightarrow 0$$

$$b \rightarrow \lambda$$

Differential Privacy: Definition

Randomized function A has ε -differential privacy if for all data sets D_1 and D_2 differing by at most one element and all subsets S of the range of A,

$$Pr[A(D_1) \subseteq S] \le e^{\varepsilon} Pr[A(D_2) \subseteq S]$$

Slide: Adam Smith

Laplace Mechanism

• Global Sensitivity:
$$GS_f = \max_{\text{neighbors } x, x'} \|f(x) - f(x')\|_1$$

Theorem: If $A(x) = f(x) + Lap\left(\frac{GS_f}{\epsilon}\right)$, then A is ϵ -differentially private.

Laplace Mechanism: Proof Idea

Theorem: If
$$A(x) = f(x) + Lap\left(\frac{GS_f}{\epsilon}\right)$$
, then A is ϵ -differentially private.

Laplace distribution $\mathsf{Lap}(\lambda)$ has density $h(y) \propto e^{-\frac{\|y\|_1}{\lambda}}$

Sliding property of
$$\mathsf{Lap}\Big(\frac{\mathsf{GS}_f}{\varepsilon}\Big)$$
: $\frac{h(y)}{h(y+\delta)} \leq e^{\varepsilon \cdot \frac{\|\delta\|}{\mathsf{GS}_f}}$ for all y, δ

Proof idea:

$$A(x)$$
: blue curve

$$A(x')$$
: red curve

$$\delta = f(x) - f(x') \le \mathsf{GS}_f$$

Laplace Mechanism: Proof

To Prove:

$$\Pr[A(x) \in S] \le e^{\varepsilon} \Pr[A(x') \in S]$$

Distribution of A(x): Laplace(f(x), GS_f/λ)

• Distribution of A(x'): Laplace(f(x'), GS_f/ λ)

Laplace Mechanism: Proof

$$\frac{Pr[A(x) \in S]}{Pr[A(x') \in S]}$$

$$= \frac{Pr[y \le A(x) \le y + dy]}{Pr[y \le A(x') \le y + dy]}$$

$$= \frac{e^{-|y - f(x)|/\lambda}}{e^{-|y - f(x')|/\lambda}}$$

$$= e^{\frac{|y - f(x')| - |y - f(x)|}{\lambda}}$$

$$\le e^{\frac{|f(x) - f(x')|}{\lambda}} \le e^{\frac{GS_f \epsilon}{GS_f}} = e^{\epsilon}$$