18734: Foundations of Privacy

Bitcoin

Anupam Datta CMU

Fall 2014

Part I: Reconstructing Bitcoin

A rational reconstruction of Bitcoin

- 1. Start with straw man design
- 2. Identify weaknesses
- 3. Augment design and iterate

Step 1: A signed letter of intent

- Alice: "I, Alice, am giving Bob one coin"
- Alice digitally signs message and announces bits to everyone.
- Properties
 - Establishment of Alice's intent
 - Limited protection from forgery
- Weakness
 - Coins are not unique; can be duplicated

Step 2: Unique serial nos. on coins

- Alice: "I, Alice, am giving Bob one coin, with serial number 8740348"
- Alice: "I, Alice, am giving Bob one coin, with serial number 8770431"
- Bank issues coins with unique serial numbers, keeps track of who owns coins, verifies transactions
- Properties
 - Establishment of Alice's intent
 - Better protection from forgery
- Weaknesses
 - Need trusted bank to issue coins, keep track of who owns coins, verify transactions
 - Bank can link transactions to identity

Possible design

- E-cash lecture on Nov 17
 - Retain bank
 - Ensure that bank cannot link transactions to identity
 - Agents cannot double spend their electronic coins
- Key novelty in Bitcoin design
 - No centralized bank

Step 3: Making everyone the bank

- Everyone maintains a copy of the public ledger (block chain) of transactions (keeps track of who owns coins)
- Alice: "I, Alice, am giving Bob one coin, with serial number 8740348"
- Bob uses his copy of the block chain to check that the coin is Alice's; he broadcasts both Alice's message and his acceptance of the transaction to the entire network, and everyone updates their copy of the block chain.

Weaknesses

- How to get serial numbers? (hash of transaction)
- Double-spending: What if Alice gives the same coin to Bob and Charlie at the same time?

A Network Verification Design

- Bob does not verify Alice's coin by himself.
- Asks everyone on the network to verify
- When "enough" people confirm that the coin is indeed Alice's, Bob accepts and everyone updates their block chain
- Weakness:
 - Sybil attack: Alice creates many fake agents who lie for her; Alice spends the same coin many times

Step 4: Proof-of-work

- Computationally costly for network users to validate transactions
- Reward network users for validating transactions
- Properties
 - Sybil attack won't work unless dishonest agents put in significant computational resources
 - Verifiers rewarded with fixed number of bitcoins for a batch of transactions (details soon)
 - Additional ideas to ensure that ledger succinctly maintains history of all transactions (details soon)

Part II: Overview

Bitcoin primer (1/2)

- A peer-to-peer digital payment system
- Completely decentralized digital currency
 - No central mint to produce currency
 - No central bank to verify transactions
 - Verification needed for digital currencies, are duplication of coins simply means "copying bits"
 - Without verification double-spending is possible
 - Physical currencies avoid this by using physical security features
 - Once confirmed, transactions are **irreversible**
 - Predictable, capped, currency supply
- Key innovation in Bitcoin: coin production and verification is done by network consensus

Bitcoin primer (2/2)

There is actually no notion of a "coin"

- Bitcoins are exchanged from "wallet" to "wallet"
- Transactions are at the heart of the protocol
- Wallets are represented by addresses (e.g., *1VayNert*...)
 - (An address is the public key of the wallet)

Bitcoin transactions

- Alice wants to send 1 BTC to Bob
 - She picks a transaction (or a group of transactions) that she has previously been the recipient of and that cumulatively contain at least 1 BTC
 - She then appends Bob's wallet address to the transaction and digitally signs it
- When Bob subsequently wants to spend the 1 BTC, all he has to do is to repeat the operation

Preventing double-spending

- Bob now has 1 BTC
 - He wants to send it to Charlie...
 - ... while keeping it for himself at the same time
- To prevent this Bob (and Alice before him) has to broadcast the transaction to everybody in the Bitcoin network
- Then other peers can verify that the transaction is not a double-spend
- Once this is done, the transaction is embedded forever in a public ledger

The Block Chain of Transactions

Preventing double spending

Slide credit: Joe Bonneau

Bitcoin is transaction-based

A Bitcoin Transaction

{"hash":"7c4025...", //serial number: hash of transaction 1. // protocol version "ver":1, 2. // no.of inputs "vin_sz":1, 3. "vout_sz":1, // no.of outputs **4**. "lock_time":o, // transaction finalized after time 5. // no. of bytes in transaction 6. "size":224, 7. "in":[// input of transaction 7-11 {"prev_out": // input is an output of a previous transact. 8. {"hash":"2007ae...", // serial number of previous transact. 9. // output number of previous transact. 10. "n":0}, "scriptSig":"304502... 042b2d..."}], // signature and pub key of sender 11. // output of transaction 12-14 12. "OUt":[13. {"value":"0.31900000", // outputs 0.319 BTC 14. "scriptPubKey":"OP_DUP OP_HASH160 a7db6f OP_EQUALVERIFY OP CHECKSIG"}]} // script for verifying transaction

Bitcoin transactions specify scripts

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Slide credit: Joe Bonneau

Bitcoin transactions specify scripts

<sig> <pubKey> OP DUP OP HASH160 <pubKeyHash> OP EQUALVERIFY OP CHECKSIG

Slide credit: Joe Bonneau

Bitcoin script features

https://en.bitcoin.it/wiki/Script

Part III: Mining Bitcoin

Coin production

- Coin production is embedded in the verification process
- Verifiers ("miners") verify batches of transactions at once
 - In exchange for which they are allowed to add a "creation" transaction to the batch and give themselves a fixed amount of money
 - 50 BTC originally, 25 BTC now, divided by two every so often
 - Verification is combined with a "proof-of-work" scheme to ensure
 - That transactions have proper timestamping
 - That currency production is rate-limited

More on mining incentives

- Miners solve a cryptographic puzzle: Find x s.t. H(x||I) < y where I is the batch of transactions.
- There is no good algorithm to solve this (*H* is a cryptographically secure hash function)
 - **Brute-force:** try *x*=0, *x*=1, *x*=2, *x*=...
 - The lower *y*, the harder the puzzle
- Difficulty is tunable and is (by edict) designed to be inversely proportional to the total computational power of the network
- The goal is to have one block every ten minutes
 - Predictable supply of currency (independent of the difficulty)
 - But this limits how quickly transactions can be verified
 - At least 10 minutes, usually 60 minutes is recommended

Transaction fees

- In addition to the bonus they get for mining, miners get "transaction fees"
 - Leftover "change" voluntarily left in transactions
- Because the bonus is decreasing over time, the expectation is that transaction fees will increase over time to make up for lost mining revenue

Mining difficulty

Bitcoin Hash Rate vs Difficulty (9 Months)

Difficulty adjustment

Bitcoin Block Generation Time vs Difficulty

Slide credit: Joe Bonneau

bitcoinwisdom.com

Mining rewards

Courtesy: Brian Warner

Total network capacity

- 2⁶⁴ hashes per block (every 10 minutes!)
- **2**⁷⁵ hashes in 2013
 - In exchange for ~US\$250M
- Consuming > 100 MW

Bitcoin mining hardware

TerraMiner™ IV – 2TH/s Networked ASIC Miner

\$5,999

Shipping June 2014

300 GH Bitcoin Mining Card The Monarch BPU 300 C

\$1,497.00

2ty: 1 ADD TO CART	Qty:	1	ADD TO CART
--------------------	------	---	-------------

Pre-Order Terms: This is a pre-order. 28nm ASIC bitcoin mining hardware products are shipped according to placement in the order queue, and delivery may take 3 months or more after order. All sales are final. Slide credit: Joe Bonneau

THE LEOPARD

DETAILS

- 2,5 TH/s
- Dimensions: 15" x 13.3" x 13.7"
- (38cm x 34cm x 35cm)
- 28nm ASIC technology
- Silent Cooling
- In-built WiFi Connection (without Antenna)
- Less than 750 watt (0.3 per GH)
- 1 Year Guarantee
- \$5.800

COMES WITH

- 1. Power Supply
- 2. Free Remote Power Outlet & Smartphone App
- 3. Free User Guide
- 4. Free Personal Assistance for Setup

SHPPING

- Worldwide, Express
- Included in the price
 Available:

Should I mine bitcoins?

Chilkoot pass, Klondike 1898

Slide credit: Joe Bonneau

Part IV: Using Bitcoin

Getting Bitcoin

- Become a miner
 - Nowadays only profitable if dedicated (ASIC) hardware
- Buy at an exchange
 - CampBX, Bitstamp, BTC-e, Coinbase...
 - (Mt.Gox before they went bankrupt)
 - Very high concentration on exchanges through which money is exchanged
 - Exchanges fail pretty often...
 - Increasingly scrutinized by regulators
- Buy from individuals
 - Satoshi Square in NYC

Main Bitcoin uses

As a speculative instrument

- People invest in BTC, betting on its rising value
- Dominant use thus far

Main Bitcoin uses

As a currency

- Only currency accepted on underground marketplaces (Silk Road, Evolution,...)
 - (Except for LiteCoin, which is a clone of Bitcoin)
 - Because of its "anonymity properties"
 - Still relatively modest
 - Entire Silk Road revenue represented in 1st half of 2012 about \$15M/annum
- Gambling, poker sites
 - Large number of transactions, volume not very high
- Other uses still in their infancy
 - Campaign contributions, online stores (e.g., Overstock), etc

Part V: Anonymity?

Pseudonymity vs anonymity

- Wallets are public/private key pairs
 - Can create as many as you want
 - Think of them as zero-cost pseudonyms
- There is no central authority issuing Bitcoins or vetting transactions

This means Bitcoin is anonymous, right?
 NO!

Bitcoin tracing

- Anonymity here implies unlinkability of transactions
- The entire ledger of all transactions is available, forever
 - Technically in a compressed form, but transaction chains can all be reconstructed
- Even if you add intermediary dummy steps wallets, linking the source and the destination of a transaction may be done by graph analysis...
 - Something that computer scientists know how to do!
 - Reid & Harrigan, 2011
 - Shamir & Ron, 2012
 - Meiklejohn et al., 2013
- Families of wallets can be pooled together as belonging to the same actual user...
- ...and if somehow you can get the user's identity, the game is over

Anonymizing Bitcoin

Mixers

Did Alice give 10 BTC to Charles or Daisy?

Anonymizing Bitcoin

Mixers in practice

- Need to also introduce arbitrary delays
- Introduction of change addresses, etc.
- Mixer can be dishonest!

Anonymizing Bitcoin

- It's unclear how good existing Bitcoin mixers are
 - Key difference with message mixing (Tor, mixnets)
 - You can't implement arbitrary "padding" money has to go somewhere eventually
 - Possible measure: taint
 - Amount of money that can be traced back to a given source
 - Recent research suggests existing mixers are not effective or downright dishonest

Acknowledgment

Slides 2-10, 15, 18, 21 are mine
Thanks to Nicolas Christin for all other slides