TBD Cool Title

Billy Westlin, Cody Martin, Samantha Klonaris & Martin Gao Group 3

Project Concept & Motivation

Concept:

Project Light, Images & Video on 3D objects Aim to create an android api for developers

Motivation:

Carnegie Mellon spends \$140K annually on ink for the architecture department.

Goal: Decrease this number with the purchasing of a couple of projectors and a table.

Other Applications :

3D Modeling

Board Games

Instruments

Competitive Analysis

Zebra Imaging

React Table

Requirements

- Displays correct and accurate image on objects independent of the number of projectors or the angles are which the projectors are placed around the table
- Package our entire product in a single suitcase for portability
- Synchronize the system, when setting up, in under 10 seconds, re-render images, when needed, in under a second
- Works under all lighting conditions

Technical Specifications

Hardware Components

- o 2-3 Pico Projectors
- o 2-3 Odroid-U's (similar to Raspberry Pi)
- Software Components
 - OpenCV
 - o OpenGL

Architecture

Anticipated Risks & Mitigations Strategies

- Risk #1 Image projection doesn't display precisely on 3D objects, causing them to look distorted.
- Risk #2 Doesn't work in all lighting conditions
- Risk #3 Long Rendering Time