DIGITAL SANDBOX WORKSHOP
Summer 2004

Sandbox Design Experience Course

Outline

• Introduction
• Overview of SDX 2003
• Sandbox Design Experience 2004
 – What’s new
 – Project overview
 – Final Results
• CAD Flow in SDX 2004
• Multimedia CAD demos
Sandbox Design Experience Course

- Graduate-level VLSI course taught concurrently at three universities in the Spring of each year
 - Carnegie Mellon University
 - University of Pittsburgh
 - Pennsylvania State University
- Professors teaching the course in 2004
 - Rob Rutenbar and Wojciech Maly (CMU)
 - Vijay Narayanan (PSU)
 - Ivan Kourtev (PITT)
- Course contents
 - Project-based, complex SoC design with semi-custom design flow
 - Use Synopsys and Cadence CAD tools and OKI 0.16um technology

First SDX, 2003

- Project Design:
 - Network-on-Chip architecture
 - Low Density Parity Check error-correction decoder
- ASIC design flow
 - Modelsim, Design Compiler, Silicon Ensemble with OKI 0.16 library
- Web Conferencing with PSU and PITT for lectures and reviews
- Team Organization
 - 4 teams in total (2 CMU, 1 Pitt, 1 PSU) each working on a chip
 - 4 subteams in each team working on a chip component
- All subteams finished layout and RTL verification
Lessons of the first SDX course

- Overall the class was a major success and popular with students

- Complete chip assembly not finished
 - Previous-generation CAD tools (esp. Place and Route)
 - Not enough time (approx. 2 months for design stage)

- Functional verification is challenging
 - No special tools used and not enough time

What’s new this year, SDX 2004

- Herman Schmit left Carnegie Mellon in December 2003
 - Professors Rob Rutenbar and Wojciech Maly replaced him

- Project
 - Specification is much more relaxed

- Improved CAD flow
 - Added industry-standard verification tool: Verisity
 - Added power estimation
 - Improved coverage of IP integration and clock tree design

- Designed multimedia training demos for CAD tools
Project Design, LDPC

- Implement LDPC for IEEE Standard 802.11g Spec, June 2003
 - Hot research topic
 - Part of a standard for Digital Satellite, 4G wireless standards; research active for use in Disk Drives, Optical Communication, Ethernet, etc
 - No commercial chips exist to date. (Intel is working on it)
 - Excellent application for Hardware, exhibits massive parallelism

- Actual spec given to students
 - Data Rate: 54 Mbps
 - Packet Size: 1024 bits
 - LDPC Decoding Accuracy: 10%
 - Area: < 200 mm²

- Last year we gave students
 - Elaborate specification
 - Simulation tools
 - Verilog code for most complex components
 - Communication protocols
 - Suggested architecture

- This year… no fixed architecture and minimalist spec

- Student reaction:
 - Initial: complete disbelief
 - Final: excitement and innovative, diverse architectures
Project Experience

• Project Flow
 – Teams spent more than a month on architecture alone
 – But... once they got rolling, they had layouts a lot quicker than last year
 • Last year, many people were confused about LDPC till the semester’s end
 – Teams reached chip integration and RTL verification for the entire chip

• Team Dynamics
 – Teams were more flexible and came more together than in SDX 2003
 – Few very strong PhD students played a major leadership role

• CAD Design flow
 – More complete: covered power, clock tree, memories

Final Results

<table>
<thead>
<tr>
<th>Team</th>
<th>Highlights</th>
<th>Mbps</th>
<th>MHz</th>
<th>W*</th>
<th>mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMU1</td>
<td>Static schedule</td>
<td>160</td>
<td>275</td>
<td>23</td>
<td>150</td>
</tr>
<tr>
<td>CMU2</td>
<td>Dynamic schedule</td>
<td>76</td>
<td>173</td>
<td>N/A</td>
<td>90</td>
</tr>
<tr>
<td>PSU</td>
<td>H-matrix topology Supernode</td>
<td>129</td>
<td>200</td>
<td>N/A</td>
<td>100</td>
</tr>
<tr>
<td>PITT</td>
<td>Hypercube cluster topology</td>
<td>54</td>
<td>115</td>
<td>N/A</td>
<td>144</td>
</tr>
</tbody>
</table>
SDX 2004, CAD Design Flow

- **Verilog RTL**
 - Mentor Graphics
 - ModelSim
 - Synopsys Design Compiler
 - Synopsys Prime Time
 - Cadence Silicon Ensemble

- **Open Verification Library**
 - OKI Std. Cell Library

- **EDA Tool Design Flow**

CAD lessons

- **Verisity Specman** for functional verification
 - Many students found the learning curve too steep
 - Previous coursework in verification would be helpful
- **Power Estimation**
 - All teams obtained power estimation numbers
 - But... bugs in OKI library confused students
 - Better libraries to make power results more predictable
- **OKI memories**
 - Some teams used memories successfully in their designs
 - Others decided not to b/c area specification didn’t force them
- **Place and Route**
 - Silicon Ensemble can not handle multimillion-gate designs
 - We need a new Place and Route tool
Multimedia CAD Demos

Problem Definition:
• In SDX class students must learn in a month(!)
 1. ModelSim
 2. Specman
 3. Design Compiler
 4. PrimeTime
 5. Silicon Ensemble
 6. PowerCompiler
• All CAD tools are notoriously counter-intuitive, very complex, come with thousand-page manuals, script-based
• In the industry, engineers attend CAD training for a week, and spend months learning the tools

Solution
• Prerecorded animated Flash videos
 – Show step-by-step how to setup the tool and run a sample design
 – Contains few essential slides explaining underlying CAD concepts
 – Include on-screen comments highlighting functionality and possible pitfalls
 – Web-based, cross-platform, only needs ubiquitous Flash plug-in
 – Records actual live session
• Collection of files for push-button tool use

Results
• I received minimum CAD-related questions from students
• Good reception from students
Sandbox Multimedia CAD Tutorials

ASIC Design with EDA software, Live Demonstrations

www.ece.cmu.edu/~sandbox/demos

- RTL Verification with Specman e
- Gate-level Simulations with ModelSim
- Logic Synthesis with Synopsys Design Compiler
- Static Timing Analysis with Synopsys PrimeTime
- Placement and Routing with Cadence Silicon Ensemble
 - Running Silicon Ensemble in the GUI mode
 - Clock Tree Generation with Cadence CTGen
- Power Estimation with Synopsys Power Compiler
- Integrating IP blocks, DesignWare and Virage SRAM
- Code Revision Control with CVS

© M. Khusid 2004

CAD demos, how to

- Created with Macromedia RoboDemo and RoboPresenter
 - In Flash web-based format; can be voice-annotated as well
 - Demos are easy to compile and annotate (1-2 hours)
 - Requires no programming; software records your mouse movements and keyboard strokes
 - Demos are created on Windows, viewed on Windows/Unix/etc
Sandbox Plans for the Demos

• Package for each Jump-Start kit
 – Multimedia Flash, step-by-step demo showing how to run the tools
 – Supplementary design files(RTL), environment setup files(Unix scripts) and all required scripts for the CAD tools
 – PowerPoint presentation explaining basic concept required
 – Web-based, searchable knowledgebase of most common issues
 – SCMOS Design Kit and CMUlib18 Standard cell library

• Develop a rich set of Jump-Start CAD training materials
 – Full-custom: 6 kits
 – Semi-custom: 14 kits
 – FPGA: 3 kits