CMU DSP

The Carnegie Mellon Synthesizable Digital
Signal Processor Core

Alpha Version Documentation 1.12 1999/06/10

Chris Inacio TheCMU DSP Team
inacio@ece.cmu.edu

June 10, 1999

CONTENTS CONTEN

TS

Contents

1 Introduction
1.1 Getting and Installing the Distribution

2 Architecture

2.1 OVEeIVIEW e

2.2 Arithmeticand Data LogicUnit

2.3 Address GenerationUnit,

24 OtherUnits e
241 BusSwitch.
2.4.2 ProgramControlUnit

2.5 Memory and ExternalInterface

3 File Repository
3.1 Availability
3.2 VerilogSourceFiles.
3.3 Documentation
3.4 TestScriptsandFiles,
3.5 MiscellaneousFiles L.

4 Scripts and Tools
4.1 Introduction.
4.2 Verilog PreProcessor e
4.3 reformat . ..
4.4 coff text dump
45 run-test .. L L
4.6 cp2build ... e
4.7 BuildingtheTools.

5 CMU DSP Testing
5.1 Introduction.
5.2 Writing anew functionaltest
521 OVerview e
5.2.2 Writihnganewprogram
5.2.3 Motorola Simulation Traces

10
11
11

13

13

13
14
14
14
16

16

top.tex i Rev: 1.12, Exp, June 10,

1999

CONTENTS

6 Building CMU DSP using Synopsys

6.1 Introduction. . . .

6.2 Creating a SynopsysWork Area

A Supported Instructions
A.1 ALU Instructions

21
21
21

23

intro.tex 1.7 1999/03/22 04:18:10

2 CONTENTS

intro.tex 1.7 1999/03/22 04:18:10

Chapter 1

Introduction

TheCMU DSP is a synthesizable digital signal processor (DSP) core written in Ver-
ilog. TheCMU DSP is modeled after the Motorola DSP56002 processor, however,
theCMU DSP does not include all of the instructions available to the DSP56002 pro-
cessor, nor does it implement necessary functions such as interruptSMIh®SP

is complex enough to be used as a real example for research, but is not capable of being
used in a commercial environment.

TheCMU DSP can be modeled and tested at various different levels of represen-
tation and as such is useful as a benchmark for electronic design automation tools[1].
The benchmark is oriented as a single design description with various components to
make the entire core. This differs from previous benchmark work which contained
many small test cases.

Currently theCMU DSP is best modeled at the structural Verilog level and can
be functionally tested at that level and below. There is a partially functional behavioral
instruction set architecture (ISA) description that we hope to finish and add to the
overall framework for testing behavioral compiler technologies.

TheCMU DSP is currently being used within various research groups and classes
at Carnegie Mellon University. Some of the research usin@Wb DSP isinthe area
of formal verification, and we would like to add that capability to the testing framework
as it becomes available. Some Carnegie Mellon Universityclasses are also doing ATPG
using a part of th€MU DSP core as their test case. As more information in this area
becomes available we will include it with the gener@lU DSP distribution.

Future plans for th€MU DSP are for it to be used in many areas of current
computer research. The core itself is relatively stable, and small bug fixes are the
current largest change occurring to the repository. We do plan to add more information
and scripts for testing theMU DSP core in different ways as those resources become
available. We also hope to track publications referen€ibidg) DSP core and list them
to the general community @MU DSP users.

TheCMU DSP was developed by William Dougherty, Chris Inacio, Ben Klass,
David Nagle, Andrew Ryan, Herman Schmit, Don Thomas, Ying-Fai Tong, and Nitzan
Weinberg at Carnegie Mellon University, with the help of many others.OM& DSP
was developed under L. Richard Carley’s low power research as a test case for that

intro.tex 1.7 1999/03/22 04:18:10

Introduction

project. TheCMU DSP project was sponsored by the Defense Advanced Research
Projects Agency under order number A564 and the National Science Foundation under
grant number MIP90408457.

1.1 Getting and Installing the Distribution

We recommend reading through this document before attempting to install and use the
CMU DSP for anything. The documentation explains many nuances in the structure
of the repository that need to be understood beforeCiii&) DSP can be used with
any ease.

The distributions create tHeMU DSP repository in a sibling directory, see Sec-
tion 3.4 on page 11 for information about the directory structure, to the one they are
expanded in. We do not recommend rearranging the directory structure present in the
archive files. Many of the scripts written f&MU DSP require the directory structure
to be present in order to operate correctly.

You should check for newer versions of this documentation and the distribution
from http://www.ece.cmu.edu/ lowpower/benchmarks.html. Good luck the using the
CMU DSP from theCMU DSP team!

arch.tex 1.10 1999/06/10 18:18:17

Chapter 2

Architecture

The architecture of thEMU DSP s briefly reviewed here, but for a more complete
description of the DSP56002 architecture, please see the Motorola DSP56000 Digital
Signal Processor Family Manual. There are some areas in which in the architecture
of the DSP56002 is not equivalent to the architecture oftkié) DSP , but for most
purposes, and most signal processing algorithms, the architectures are the same.
TheCMU DSP is different from the Motorola DSP56002 mostly in components
outside of the core. Frefcmudsp-block-diagram-busses shows a block diagram of the
entire CMU DSP design using the Duet Epoch tools. The Synopsys tools do not
generate enything more than the core currently. The differences outside the core are
significant compared to Motorola’s DSP56002, and the access to the internal memories
is limited to the External Bus. For more information an @dU DSP design outside
of the core see Section 2.5 on page 7.

2.1 Overview

TheCMU DSP architecture is a Harvard architecture designed to support the stream-
ing nature of multimedia data. Most digital signal processors are designed without
data caches and a large amount of bus bandwidth to support this feature. The com-
mon design goal, achieved with t#U DSP , is to be able to read in two data in a
single cycle and perform a multiply-accumulate instruction on that data. The Harvard
architecture employed in tHeMU DSP facilitates this goal.

TheCMU DSP s Harvard architecture consists of three sets of separated data and
address busses. Two of the busseésindY are data busses, while the third bis,
is for program memory. In order to move data from one memory space to another
special instructions in combination with the Bus Switch Unit unit can be employed.
See Section 2.4.1 on page 7 for more information about moving data between address
spaces.

Address generation for theMU DSP is done primarily by two different units.
The Address Generation Unit generates the addresses ¥raheY data busses. The
Address Generation Unit is capable of doing complex addressing tasks independently

arch.tex 1.10 1999/06/10 18:18:17

Architecture

Ve I
X Address/Data Y Address/Data XM
Busses Busses / e
i
CMU DSP RAM Y Memory
Core Interface
P Address/Data
Busses
External Address/Data —_— PM emory
Busses
g %

Figure 2.1:CMU DSP Block Diagram With Busses

of the Data Arthimetic and Logic Unit to maintain a datum per cycle per bus through-
out program execution. For more information on the capabilites of the Address Gen-
eration Unit see Section 2.3 on page 6. The program address bus is generated by the
Program Control Unit in most circumstances, jump instructions in which the target ad-
dress doesn't fit into the instruction word is a notable exception. For more information
about the Program Control Unit see Section 2.4.2 on page 7.

The data busses

2.2 Arithmetic and Data Logic Unit

The Data Arthimetic and Logic Unit (ALU) is the part which is generally of the most
concern to the programmer. While the Address Generation Unit (AGU) is also a very
programmable unit with many of its own adders, the ALU is responsible for the results
that make th€MU DSP interesting.

The ALU contains the, Y, A, andB registers along with the multiply-accumulate
and adder units. For more information about this unit see [2]. For a list of supported
instructions for th&€€MU DSP see Appendix A on page 23.

2.3 Address Generation Unit

The Address Generation Unit (AGU) would be the second major unit of programmer
interest. The AGU generates the addresses for accessing the data memories. One
important part of the AGU’s address generation is its ability to operate independently
of the ALU. The AGU can stream through the data memories in complex ways in order
to support the algorithm design for the ALU. For more information about the AGU unit

arch.tex 1.10 1999/06/10 18:18:17

2.4 Other Units 7

4 I
CMU DSP Core
Data Address
Arithmetic and Generator
Logic Unit Unit

| X DataBus X Memory

Y DataBus

Y Memory

GDB

P DataBus

i

P Memory
Program
control Bus
Unit Switch
G J

Figure 2.2:.CMU DSP Databus Diagram

see [2]. For a list of supported instructions see forGhU DSP see Appendix A on
page 23.

2.4 Other Units

2.4.1 Bus Switch
2.4.2 Program Control Unit

This unit contains the program counter (PC) and the flag bits for controllinGhig
DSP. Itis important to read the supported instructions with relation to use of this unit.
For more information, please see [2].

2.5 Memory and External Interface

The memory and external interface on €U DSP is a very limitied design. The de-
sign goals were to provide a method to run test programs througbMtie DSP core
to measure power consumption. In order to load a program into the on-chip memories,
the core access to those memories must be disabled. Disabling the core for external ac-
cess implies that theMU DSP design is not suitable for too much more than running
test programs.

Not finished:
In order to turn on the external port you must pull tieACCESSine low. This
turns on the External Bus has the controller to the memories and stops the clock to
the core. The core is also tri-stated and the core interface is tri-stated. The using the

arch.tex 1.10 1999/06/10 18:18:17

Architecture

MEM_SELECTines, you select either th¥, Y, or P memory. All memory timing

and issues are the responsibility of the external user. The memories are asynchronous.
When the chip is not in external access mode,NtieM_SELECTines select which

bus to snoop. If the bus is driven while the core is active, chip damage may result.
Bus snooping allows the external interface to watch core access to any of the three
memories. The user may change which bus to snoop during core execution.

file-rep.tex 1.5 1999/03/22 04:18:10

Chapter 3

File Repository

The file repository holds all the Verilog source files, all of the scripts used to build and
simulate, and all of the documentation available for@haU DSP . This chapter will
explain how to get access to the repository and the organization of the repository. This
chapter will also attempt to explain the rational behind the structure that we used.

3.1 Availability

The CMU DSP is available over the Internet from http://www.ece.cmu.edu/ low-
power/benchmarks.html. You will be able to download a compressed archive of the
development tree. This archive will be updated periodically to include bug fixes and
patches, however, the tree is in a stable form at this time. We do not expect to make any
major changes to the tree format or the contents in the near future. The archive will be
available in UNIXtar /GZip format. We may also make it available using thp

format.

3.2 \erilog Source Files

The source files for theMU DSP are kept in a somewhat uniform directory structure.
The files of most interest are the filesdamudsp/structural . These files contain
the structural description of theMU DSP .

In Figure 3.1 a partial diagram of tf@MU DSP repository is shown. The fig-
ure displays part of the structural tree of the repository and goes further into the Data
Arthimetic and Logic Unit part of the core. The Data Arthimetic and Logic Unit com-
ponent of theCMU DSP has a directory structure the is very similar to the other
components of th€MU DSP core. The descriptions below generally apply to all of
the different core components.

Some properties to note are that below each major part of the core, (and the RAM
Interface also,) exist hefore_syn directory. This directory contains the Verilog
source code that requires a compiler such as Synopsys to map the design to the ap-
propriate gate library. Also, looking at the file names in before_syn directory

file-rep.tex 1.5 1999/03/22 04:18:10

10 File Repository

parent/
cmudsp/
structural/
siblingl/ testall/ au/

sibling2/ misc/ agu/ before_syn/

doc/ data_alu/ test/ build.scr
behavioral/ bus_switch/ XYReglmm_c.v check_imm.v
peu/ XY Reglmm_scan.v control.v
top/ addsub_c.v control_p.v
ram_system/ au_struc.v extcheck_c.v
ram_interface/ async_ramb.v mult_decoder.v

core_cascade.v check_imm.v
ctl_def.v
globalsv

timescalev

Figure 3.1:CMU DSP repository partial file tree

and the files in the directory above it, one will notice that there are duplicate names.
The CMU DSP team keeps a current compiled version of each of the files in the
before_syn directory in the core component directory above it. The gate library
used as a target to compile the files is the Duet Epoch HP14B library. Building the
structural files using Synopsys is aided by the liléld.scr in thebefore_syn
directory which is a command script for Synopsysd¢s shell tool.

3.3 Documentation

The publicly available documentation for tB&U DSP is available in thaloc sub-
directory. The information contained in tldec directory is in one of three different
formats. This documentation is produced usigX2e and the source files and the
processed output are available in thec subdirectory. Some diagrams and informa-
tional files in thedoc subdirectory were created using Adobe Framemaker. These files
may or may not be available in other formats. Lastly, some files iddleesubdirectory

are plain text files.

The text files are often the files that change the most with changes@MheDSP
. Plain text files are the easiest to change and update as the small details in the design
change. The files created using Framemaker are richer in content and usually contain
diagrams or other graphics which are better produced in the desktop publishing tool.
(Some in the€MU DSP may contend that everything should be done in Framemaker,
but this author would disagree.) Lasti§JgX is used for this documentATgX allows
easy decomposition for the sections and is easily used@¥ta

file-rep.tex 1.5 1999/03/22 04:18:10

3.4 Test Scripts and Files 11

3.4 Test Scripts and Files

The scripts and test files are generally held in two directories beloontivelsp direc-

tory. Within thetestall directory, theuntest script, see Section 4.5 on page 14,
and its data files are kept in there. Brieflyn-test is used to do automated func-
tional testing theCMU DSP by running programs on it. The other directory with
current scripts is thenisc directory. Please see Chapter 4 on page 13 for more infor-
mation about other scripts.

Thesibling directories in Figure 3.1 are noted because many of the scripts written
by theCMU DSP team expect to be run from within a sibling directory. The scripts
use relative paths to go up one directory and then down intetiedsp directory
and below. Some scripts have environment variables which can easily be edited to
change this behavior, however, those scripts may call other tools which are not as easy
to change. See Chapter 4 on page 13 for more information about the available scripts
and their uses.

3.5 Miscellaneous Files

The Miscellaneous files section, thesc subdirectory, contains a script used in the
processing of the Verilog files, the Verilog mode EMACSand theC source code to
the utilities built for theCMU DSP project.

e cp2build — This scripts copies the Verilog source files from the repository,
runs them through th¥erilog PreProcessor and flattens the hierarchy
for using a CAD tool on the design. See 4.2 on page 13 for documentation of
Verilog PreProcessor

¢ verilog-mode.el— This is the Verilog mode for thEMACSditor.

e c-code— This subdirectory contains the directories for thesource code to

coff_text_dump , reformat | and Verilog PreProcessor tools.
See Sections 4.4, 4.3, and 4.2 respectively for more information on pages 14,
14, and 13.

We add these tools to the path of the people working orCiii&) DSP project.
Some scripts, such ap2build cannot be run from any directory, and must be run
from a sibling directory of themudsp directory.

tools.tex 1.10 1999/06/03 17:03:10

12 File Repository

tools.tex 1.10 1999/06/03 17:03:10

Chapter 4

Scripts and Tools

4.1 Introduction

The design flow of tools at Carnegie Mellon University includes tools from Cadence,
Synopsys, and Duet. THeEMU DSP uses at least Verilog-XL, Design Compiler, and
Epoch from these companies respectively. Most of the scripts and tools were developed
to aid the design group in building the chip and are designed for these tools. (There are
some exceptions to make the system more flexbile.) Generally, if not stated otherwise,
the scripts and tools assume these tools and your mileage may vary with other tools.
We are willing to accept contributions for support of other environments, of course.

4.2 Verilog PreProcessor

The Verilog PreProcessor tool was created to support more than one design
flow within the Verilog source files using Verilogédef | ‘define ,‘endif and
‘else preprocessor statements. This tool would not be necessary if the Synopsys
tools supported the Verilog preprocessing statements. The code base was written first
for the Duet Epoch design flow[1]. We developed this tool to support building the
Synopsys version.

TheVerilog PreProcessor tool is very limited in its syntax and capabilities.
If you push it too hardt will break. TheVerilog PreProcessor tool is not very
flexible, and anyone who is interested may extend it to their heart's desire, but please
send us back the patches. The preprocessor was designed to solve a single problem and
be flexible enough to use reliably, and it does that.

The syntax ofVerilog PreProcessor is very simple. It accepts defining
“words” on the command line using thB option, i.e.-DEPOCHwould defineEPOCH
in theVerilog PreProcessor dictionary. You can put as manR's on the com-
mand line as you wish. The only other argument whiehilog PreProcessor
takes is the name of input files. If an option givenMerilog PreProcessor
doesn’t start withD then it is considered to be a Verilog file for preprocessing. Output
of the preprocessed files is senstdout

tools.tex 1.10 1999/06/03 17:03:10

14 Scripts and Tools

If you want a Verilog preprocessor that extends the capabilities of the macro lan-
guage in Verilog, check the Surefire Verfication web site, in their Verilog resources
section http://www.surefirev.com/resources.html

4.3 reformat

Thereformat command is used to convert the output from the Verilog simulations
to be the same format as the output from the Motorola DSP Simulator. The output
from the Verilog simulations does not include leadings zeros, “$” in front of values to
indicate hexadecimal, etc. Theformat tool simply reads in the Verilog outputted
file and reformats it so that the common utildiff may be used to compare the files
between the Verilog simulations and the Motorola simulations.
reformat was designed for the output from the Cadence Verilog-XL Verilog
simulator and may be sensitive to small changes in the output from other simulators.
Thereformat tool gets called automatically from then-test testing script.
For more information omun-test ~ see Section 4.5 on page 14.

4.4 coff _text_dump

coff text dump converts Motorola DSP COFF files into three text files represent-
ing the X, Y, andP memories. Th&€MU DSP uses a Harvard memory architecture
with two data memories{ andY and the program memom. For more information
on the architecture @MU DSP see Chapter 2 on page 5

coff text dump outputsthreefilessmem_file ,ymem_file ,andpmem_file
These files correspond to the memoie¥, andP. The files are formatted so that the
Verilog commandsreadmemh can be used to load the data in the files into memories
within the Verilog simulator. For more information on this, read the source code file
test.v in thetestall directory. Briefly, the data from the three memory files is
read into the behavioral memories defined in the file, if the external interface option
is chosen, see Section 2.5 on page 7 for a descrption of the external interface and see
Section 4.5 on page 14 for the external interface option, then the behavioral memories
are used as drivers to the structural memories.

The coff_text_dump command works only on fully resolved, (linked,) Mo-
torola DSP COFF files. It will give an error message if you try to run it on a file that
is not fully resolved. In Motorola file extensionspff text dump only works on
files ending ircld and not on files ending ialn .

4.5 run-test

Therun-test scriptis designed to automate the running of the functional test on the
CMU DSP core.run-test calls the Verilog simulator to run a program on the core.
At the end of the simulation, the memory system of @d4U DSP is written into a

text file, verilog_output_dump . The output file is reformatted usimgformat

tools.tex 1.10 1999/06/03 17:03:10

4.5run-test 15

, see Section 4.3 on page 14. The reformatted output file can then be compared using
the standard Unix utilitgliff to see if the results are the safne.

Currently,run-test supports four test programs, all DSP kernel applications.
The programs are two types of finite impulse response (FIR) filter, a Fast Fourier Trans-
form (FFT), and an adaptive FIR using least means squares (LMS). The difference be-
tween the two FIR filters is in the number of taps that are used, the first version, (hamed
simply FIR,) uses only four taps, and the second version uses sixty-four taps, named
FIR64.

run-test also chooses a abstraction level at which to simulateCttie) DSP
. There are currently three levels implementeti, , which is actually the behav-
ioral level of the core onlyprecascade , which is the behavioral level of the en-
tire design, using Verilog descriptions of the Duet Epoch library components used,
andpostcascade , which is a fully structural level description with back-annotated
resistor-capacitor delay used.

In order to useun-test you must choose one and only one of the programs to
simulate and one and only one level at which to simulate the system. For example, the
simplest (and fastest,) simulation that you can do is:

run-test fir rtl

This simulation will run the FIR filter with four taps and simulate it on just the core
using behavioral memory. (The four tap FIR filter was chosen due to its small size and
relatively short simulation time, while exercising the most critical parts of the DSP for
power estimation.)

run-test also takes another set of non-required options. Not all of these op-
tions work with every combination above and none are required. The first option
interface cannot be used with thel level of simulation. Thenterface
option tells the Verilog stimulus code to load the structural memory models using the
external interface to theMU DSP , see Section 2.5 on page 7 for more information.
Thescan option is a simple (and currently broken,) test to make sure that the scan
chain designed into theMU DSP actually works. (Currently, either the scan chain
doesn’t work, the test doesn’t work, or both.) Téman option is supposed to simply
scan out the contents of the scan chain, store them in a behavioral register, and scan
them back in without changing them. | don’t recommend trying this option unless you
are very familiar with the inner construction of ti@MU DSP until it is working
again. Theshm option creates a SHM wave file for use in debugging@hJ DSP .
Lastly, thecycle_dump option creates a text output dump file also for debugging the
CMU DSP.

run-test also works with the Model Technology Verilog compiler and simulator
by Mentor Graphics. In order to usan-test with the Model Technology tools,
you add the optional argumemiodeltech . Themodeltech argumentnust come
before the application argument in order to work properly.

LActually, it isn't really that easy; there will always be differences in the output files because uninitialized
memory in the Verilog simulator has the val¥evhile uninitialized memory in the Motorola simulator has
the value0. See some unwritten section for details on constructing your own tests and all the details.

tools.tex 1.10 1999/06/03 17:03:10

16

Scripts and Tools

4.6 cp2build

This copies the Verilog source code into another directory for building and runs the
preprocessor on the files while coping them over. It can select Duet Epoch or Synopsys
. The default for this tool, if no command line options are given is to copy the repository
into a new subdirectory vallegerilog from the current directory and put all of the
Verilog source files in there after preprocessing them. This tool must be run from a
sibling directory of the repository unless variables within the script are edited.

4.7 Building the Tools

Some of the toolsgp2build andrun-test , are C-Shell scripts and do not re-
quire building. The other toolsyerilog PreProcessor , reformat |, and
coff_text_ dump are written in C and require compiling before they can be used.
The tools are built using GCC, GNU Make, and Flex. The C source code attempts
to be very ANSI standard C, so it should be portable to most C compilers. Some of
the more complicated make files may not work with other make utilities and the lexer
descriptions may take advantage of Flex only features. All of the development tools
mentioned, however, are freely available on the Internet if they are not already installed
on your system.

In order to build the software, go into the repository intotiec/c-code subdi-
rectory. Go into each subdirectoopff dumper ,qdvpp,andreformat and type
make in each. The only program that will build without warnings is teéormat
program.

testing.tex 1.3 1999/06/03 17:03:34

Chapter 5

CMU DSP Testing

5.1 Introduction

The testing plan originally formulated for tlgMU DSP was designed to catch design
errors in our architecture. The design group decided to achieve this goal by simulating
our design at a functional level and running programs on the design. The results of
running programs on our design would be compared against the results of running
the same program on the Motorola simulator. Our development plan included using
commercial cell libraries an large degrees of automation, so testing for circuit level
errors was not a priority for us. In the case of a circuit level error, we had included
in the design a scan chain which would hopefully enable us to determine where in the
processor the design or circuit flaw was in order to correct the design when the chip
was produced.

We have learned not to trust our design tools that closely. Part of our testing plan
had always been to simulate the entire chip for a few cycles using a SPICE level sim-
ulation. We had hoped to use an accelerated SPICE simulator for digital circuits, but
learned that one should be very careful in which simulator one trusts. We found various
errors in the circuit level, and went through great effort to eliminate them.

What we are currently providing as a test suite is the functional testing. We are not
sure what the coverage of our test suite is. We don't believe the suite to have great cov-
erage since most of applications were chosen because they are digital signal processing
kernels. There are some sanity tests which were not fully developed into the test suite
written by various members of the team while implementing their components. Hope-
fully, in the future, more complete functional coverage will be included.

5.2 Writing a new functional test

5.2.1 Overview

There are a few steps required in creating a new test and adding it into the test suite
so that it can be automatically tested. The first step, however, is to write a program

testing.tex 1.3 1999/06/03 17:03:34

18

CMU DSP Testing

for the Motorola 56002 in either assembly or C languadésing the Motorola tools,
(and their documentation,) create a linked DSP COFF file. This is generally accom-
plished by writing an assembly file, compiling it wigsm56000 and linking it with
dsplnk . At this point, you can simulate your program using the Motorola 56000
Simulator and capture the results. Using the Carnegie Mellon University provided
tool, coff_text_dump (see Section 4.4 on page 14), you can create the memory
files which the Verilog simulation will read in to initialize the memory. (For more
information on simulating the core using Verilog see Section 4.5 on page 14.) After
simulating the core using Verilog, you will need to manually comparéliffie results

of the memory dumps generated by the Motorola Simulator versus the Verilog simu-
lation. The primary reason this is necessary is that unitialized memory in the Verilog
simulation are noted ass while in the Motorola Simulator unitiailized values are

all zeroed. After verifying the the differences are all neglible, you create a standard
diff file, the baseline, which can be used in the future instead of manual comparing the
results. In order to add the new program to the testing system, the script will require
some small edits for the new program.

5.2.2 Writing a new program

This topic is really beyond the detail of this manual. All of the example programs
provided were written using a simple text editor in assembly language and the Mo-
torola 56000 assembler. For more information on writing programs for the 56002 and
theCMU DSP please see the Motorola assembly documentation.[4] There are “con-
ventions” that the Carnegie Mellon University team has used in their programs that
you may like to follow. (It will be easier to use the hints that follow if you do use
these conventions.) The general outline of a program usually looks something like the
following:

org p:$0
jmp start

org p:$50
start

endp jmp endp
nop
nop
nop

5.2.3 Motorola Simulation Traces

In order to compare the results of tidU DSP against the Motorola simulator, we
must dump the initial and final state of the memory while using the Motorola sim-

Iwhile Motorola’s C compiler should work, the CMU team has never tried to run a C compiled program
on theCMU DSP .

testing.tex 1.3 1999/06/03 17:03:34

5.2 Writing a new functional test 19

ulator. This is usually accomplished using small command scripts for the Motorola
Simulator.[3] This example script to capture the memory dumps and simulate the pro-
gram:

1 load firt_test.cld

2

3 log s new-fir64-test-input.dump
4 display x:$0..$3ff

5 display y:$0..$3ff

6 log off

7

8

9 break endp

10 log s motsim_dump.dump

11 trace 90000 H

12 step

13 step

14 step

15 log off

16

17 log s new-fir64-test-output.dump
18 display x:$0..$3ff

19 display y:$0..$3ff

20 log off

Line 1 in the example loads in the program, in this case cditedest.cld ,a

version of the 64-tap FIR filter.

Starting on line 3 are the simulator commands that create a memory dump of the
initial state of the memory. The range of the memory dump captures only the first 1024
words and only the data memory. We do not compare the program memory since the
instruction formats are different and we only capture the amount of memory equal to
the amount th€MU DSP has available to it.

Line 9 provides some more interesting commands to use in order to simulate the
program. In order to not have to know how many cycles the program will run for
in order to build these scripts we set a break point usingpteak command. By
convention, the last line in our programs is labetedip . We usually log, line 10, the
trace of the entire program which can aid in debugging the core or the program, but it
does take up quite a bit of disk space. Next we usdrdiee command and 90000
cycles should be enough for any program you want to run on a Verilog simulator. It is
important to use thél parameter, otherwigeace won't stop at the break point. We
step the program three more times, lines 12—-13, to ensure that the pipeline has cleared
and turn the log file off.

The end of the script, lines 17-20, are almost the same as lines 3—6, and capture the
data memory at the end of the simulation.

building-dw.tex 1.1 1999/06/03 17:00:38

20 CMU DSP Testing

building-dw.tex 1.1 1999/06/03 17:00:38

Chapter 6

Building CMU DSP using
Synopsys

6.1 Introduction

The CMU DSP was original built using Duet Epoch as the main underlying tool,
however, more recently that tool’s future has come into question and the Carnegie
Mellon University team has decided to make Synopsys the standard way of building
the core. Futher, by using Synopsys and a cell library developed at Carnegie Mellon
University, we are able to distribute full geometry and Spice files foiGki) DSP
without worry of licensing issues.

TheCMU DSP, using theVerilog PreProcessor is still portable to other
environments, but the most complete detail is using the source files to build the core is
given to the Synopsys design flow.

6.2 Creating a Synopsys Work Area

Like most testing and other work areas related to@MiJ DSP core, this must also

be created in a sibling directory to the repository. Create a sibling directory in order

to build a flattened preprocessed version of @MU DSP source code tree. (You

will have to have compile¥erilog PreProcessor previously for this to work

correctly. See Section 4.7 on page 16 for more information on building the tools.)
When in your working directory, copy the script fip2build from the reposi-

tory misc directory. Then simply execute tlop2build script. For more informa-

tion on thecp2build script see Section 4.6 on page 16. The flattened hierarchy of

Verilog files preprocessed for Synopsys DesignWare will be in a subdirectory named

verilog

supt-inst.tex 1.2 1999/06/10 18:11:31

22 Building CMU DSP using Synopsys

supt-inst.tex 1.2 1999/06/10 18:11:31

Appendix A

Supported Instructions

The CMU DSP does not support all of the instructions supported by the Motorola
DSP56002. This appendix tries to summarize the instructions which are supported.

A.1 ALU Instructions

The supported instructions include: ADD, ADDL, ADDR, AND, ASL, ASR,
CLR, EOR, LSL, LSR, MAC, MACR, MPY, MPYR, NOP, NOT, OR, RND,
ROL, ROR, SUB, SUBL, SUBR, TFR. Both the long version of the add and
subtract are also supported. The unsupported instructions includeBS, ADC,
ANDI, CMP, CMPM, DEC, DIV, INC, NEG, NORM, ORI, SBC, T cc, TST.
Themove instructions supported are the ALU following:

MOVE X: Y: full support

MOVE X: into Xmemory:x0,x1,y0,yl,a,b

into registersx0,x1,y0,yl1,al,bl,a,b
MOVE Y: into Y memory:x0,x1,y0,yl,a,b

into registersx0,x1,y0,yl1,al,bl,a,b
MOVE R from AGU to ALU: x0,x1,y0,yl1,al,bl,a,b

from ALU to AGU: x0,x1,y0,yl1,al,bl,a,b
MOVE | into registersx0, x1,y0, y1

1This list of instructions may not be totally complete, it is however, to the best of our knowledge the set
of instructions that is working and tested.

supt-inst.tex 1.2 1999/06/10 18:11:31

24 Supported Instructions

supt-inst.tex 1.2 1999/06/10 18:11:31

Bibliography

[1] Chris Inacio, Herman Schmidt, David Nagle, Andrew Ryan, Ying-Fai Tong, Don
Thomas, and Ben Klass. CMU-DSP Vertical Benchmarks for CADDAC-36
June 1999.

[2] Motorola, Inc. DSP56000 Digital Signal Processor Family Manub995.
[3] Motorola, Inc. Motorola DSP Simulator Reference Manub995.

[4] Motorola, Inc. Motorola DSP Assembler Reference Manudalo6.

supt-inst.tex 1.2 1999/06/10 18:11:31

