Lecture 10

MPEG-4 Overview
MPEG-4

• Originally
 – A standard for very low bit rate coding of limited complexity audio-visual material

• In July 94, the scope was extended to
 – Functionalities not supported by other standards
 • Content-based interactivity
 • Universal access
 • High compression
 – Coding of general material for a wide bit rate range
 – Flexibility and extensibility

Content-Based Interactivity

• A scene is composed of audio-visual objects
 – Not just pixels or moving blocks

• Objects can be of different nature
 – Text or images
 – Rectangular or arbitrary shape
 – 2D or 3D objects
 – Natural of synthetic

• Different coding schemes applied to different objects

• Compositor puts objects back in a scene
Applications

Human-machine interface
GUI, Virtual environment
Vision, Graphics

Content creation
Digital TV, HDTV
VCD, DVD

Computer
TV/Film
MPEG-4
Telecommunication

Wireless, Internet, ISDN, POTS, Cable
Parts of MPEG-4

- Part 1: Systems
- Part 2: Video
- Part 3: Audio
- Part 4: Conformance testing
- Part 5: Reference software
- Part 6: Delivery multimedia integration framework
- Others
 - Synthetic and Natural Hybrid Coding (SNHC)
 - Requirements and applications
 - Implementation Study
 - Intellectual property rights (IPR)

MPEG-4 Activities

- Competitive phase
 - Proposals and evaluations

- Collaborative phase
 - Verification model and core experiments
 1. Define Verification Model (VM-n)
 2. Define core experiments for improving VM-n
 3. Perform core experiments. Compare with VM-n
 4. n++, go to Step 1
MPEG-4 Time Table

- July 93 Started work
- Nov 95 Subjective tests and tool evaluation
- Jan 96 Define verification model (VM) and core experiments (CE)
- Mar/July/Sept/Nov 96, Feb/Apr/Jul 97 Update VM and define a new set of CEs
- Oct 97 Committee Draft (CD)
- July 98 Final CD (FCD)
- Nov 98 Draft international standard (DIS)
- Jan 99 International standard (IS)

MPEG-4 Video

- General functionalities
 - Coding efficiency
 - For 5 kbit/s – 5 Mbit/s
 - From small images to TV resolution
 - Progressive/interlaced
 - Error resilience and robustness
 - Spatial and temporal scalabilities
- Content-based functionalities
 - Shape coding and sprites
 - Content-based scalabilities
 - Error resilience and robustness
MPEG-4 Video (cont.)

• Tools
 – Motion/texture coding derived from H.263
 – Coding of video object plane (VOP): I, B, P
 – Binary and gray-scale shape coding
 – Scalabilities: temporal/spatial
 – Static sprites
 – Interlaced prediction
 – 12 bit video
 – Computational graceful degradation (CGD)
Structure of VOP Encoder

- Note: Segmentation is outside the scope of MPEG-4

Structure of VOP Decoder
Coding of VOP

- Motion compensation and DCT
 - Similar to H.263

- Polygon matching for motion estimation

![Diagram of VOP with transparent pixels and pixels for polygon matching]

Binary Shape Coding

- Context-based arithmetic encoding (CAE)
 - A binary shape is treated as a binary image
 - Apply CAE to each binary alpha block (BAB)

- The “context”

 ![Intra and Inter diagrams with context symbols]
Synthetic & Natural Hybrid Coding (SNHC)

- Efficient representation and composition of synthetically and naturally generated audiovisual data
- To be integrated into MPEG-4 Video and Audio
 - Not a separate part of MPEG-4
- Applications
 - Virtual environment, conferencing, education, entertainment, media production, and real-time, interactive and broadcast media experiences

SNHC Target technologies

- Video
 - Face animation
 - 2D/3D mesh compression
 - Still texture coding: wavelet-based
 - View dependent scalability
- Audio
 - Text-to-speech synthesis, structured audio, environmental auralization, 3D audio, etc.
Face Animation

- Face animation
 - 2D/3D polygon mesh for face rendering
 - Facial Definition Parameter (FDP) Set
 - Controls shape, texture, gender, age, etc.
 - Facial Animation Parameter (FAP) Set
 - Controls expressions and animation

MPEG-4 Version 2

- One year following Version 1
- Adds new profiles with new functionalities
- Video
 - Scalable transmission of arbitrary-shaped objects
 - Tools for additional efficiency improvements
 - Tools for improved error robustness
 - Coding of multiple views
 - Body animation
 - Coding of 3D meshes and scalabilities