FET Amplifiers

\[V_{GS} = 5v \]

\[V_{DS} \]

\[V_T0 = 1.0V \]
\[K_p = 2e-5 \ [A/V^2] \]
\[W = 100 \text{ microns} \]
\[L = 10 \text{ microns} \]
FET Amplifiers

- A 200mv peak ac input voltage will cause more than a 1v peak ac output voltage
- What would we change to make the voltage gain even larger?

\[V_{GS} = 5\text{V} \]

\[v_{gs} \]

\[R_D = 6.6k\Omega \]

\[V_{DS} = V_{DD} - R_D i_D \]

\[\sim 2\text{V} \]
dc Solution of FET Amplifier

- Set the ac source to zero and analyze the dc bias point
- Solution should agree with that from load line approximation

IDS1 = 1.919 mA
VGS1 = 5V
L = 10E-6
W = 100E-6
VD = 7.335 V
RC = 6.6k
VDD = 20V
dc Solution of FET Amplifier

- Response for a 5kHz, 0.2v peak ac input signal
dc Solution of FET Amplifier

- The output signal is somewhat distorted for a 0.4v peak ac input
Small Signal Assumption

- The distortion is due to the nonlinear effects when the ac v_{gs} is too large:

 bias point equations:
 \[I_D = K(V_{GS} - V_t)^2 \quad V_D = V_{DD} - R_D I_D \]

 ac & dc equations:
 \[v_{GS} = V_{GS} + v_{gs} \quad i_D = K(v_{GS} - V_t)^2 \]
Transconductance -- Gain

- The transconductance, g_m, for a MOSFET is much smaller than that for a BJT which uses the same silicon area (BJT approx. 100 times better)

$$g_m = \frac{\partial i_D}{\partial v_{GS}} |_{v_{GS} = V_{GS}}$$
Transconductance -- Gain

- BJT g_m’s are independent of area dimensions
- FET g_m’s are dependent on channel W and L dimensions

\[
g_m = \left. \frac{\partial i_D}{\partial V_{GS}} \right|_{V_{GS} = V_{GS}} = 2K(V_{GS} - V_t) = \mu_n C_{ox} \frac{W}{L}(V_{GS} - V_t)
\]
Small Signal Voltage Gain

\[v_D = V_{DD} - R_D i_D = V_{DD} - R_D (I_D + i_d) \]

- Under the small signal assumption:

\[v_d = -R_D i_d = -g_m R_D v_{gs} \]

\[\frac{v_d}{v_{gs}} = -g_m R_D \]
The small signal model is very similar to that for the BJT amplifier:

- **r_o** is the drain-source voltage change with change in i_{ds} due to channel length modulation.
Channel Length Modulation

- Given lambda and the bias point, we can calculate r_o.
- For our example, we can estimate r_o from an enlarged view of I_{DS} vs. V_{DS} at the bias point (with $V_{GS}=5\text{v}$).
Small Signal Model

- Short the dc supplies and analyze the small signal equivalent ckt:

\[V_{GS} = 5v \]

\[v_{gs} \]

\[20v \]

\[6.6k\Omega \]

\[g_m \]

\[v_{gs} \]

\[28k \]

\[6.6k \]
Biasing

- Since I_D determines g_m we’d like to bias the transistor so that the small signal gain remains as stable as possible with variations in temperature and process.

$$V_{GG} = V_{DD}\frac{R_{G2}}{R_{G1} + R_{G2}}$$
Negative Feedback Resistor

- R_S provides negative feedback for unwanted changes in I_{DS} due to process variations or temperature fluctuations.
Negative Feedback Resistor

- We can get a similar negative feedback effect with a drain to gate bias resistor
- This resistor guarantees that the transistor is biased in the saturation region -- why?

Find the R_D which establishes a 1mA I_D

$K=0.25\text{mA/V}^2$ \hspace{1cm} $V_{DD}=20\text{V}$ \hspace{1cm} $V_t = 2\text{V}$
No negative Feedback Resistor

• What is the change in I_D for the circuit below if the threshold voltage changes from 2V to 3V?

![Circuit Diagram]

$V_{GS} = 4V$

20v

$16k\Omega$
Negative Feedback Resistor

- But this change is much less with negative feedback control