MOSFET transistor I-V characteristics

Linear region: \(i_D = K[2(v_{GS} - V_t)v_{DS}] \)

\(v_{DS} \ll v_{GS} - V_t \)

\(K_n = C_{ox} \mu_n \)

\(K = \frac{W}{2L} K_n \)

Triode region: \(i_D = K[2(v_{GS} - V_t)v_{DS} - v_{DS}^2] \)

\(v_{DS} < v_{GS} - V_t \)

\(v_{DS, sat} = v_{GS} - V_t \)

(current) Saturation region: \(i_D = K[(v_{GS} - V_t)^2](1 + \lambda v_{DS}) \)

\(v_{DS} \geq v_{GS} - V_t \)
Is the transistor in saturation region?

\[v_{DS|_{sat}} = v_{GS} - V_t \]

\[V_t = 1V \]

\[V_D = 3.5V \]

\[V_G = 4V \]

\[V_S = 2V \]
Body Effect

- The source and bulk will not be at zero volts all of the time
- The p-type bulk will be connected to the lowest supply voltage for an IC
- Discrete MOSFETs may have bulk tied directly to the source
- But for ICs we can assume that there can be a positive V_{SB} for NMOSFETs

\[V_{S2B} = 0 \]
\[V_{S1B} = 0 \]
\[V_{S2} > 0 \]
\[V_{S2B} > 0 \]
\[V_B \]
\[V_{S1B} = 0 \]
Body Effect

- Positive V_{SB} for NMOSFETs tends to increase Q_B, hence decrease Q_I, for a fixed V_{GS}.
Body Effect

- Modeled as a change in the threshold voltage as a function of V_{SB}
- The source is, by definition for NMOSFET, at a lower positive potential than the drain, which is why we use it as our reference voltage

$$V_t = V_{t0} + \gamma(\sqrt{2}\phi_f + V_{SB} - \sqrt{2}\phi_f)$$

- SPICE will calculate this variation in threshold voltage, or you can over-ride its calculation by directly specifying gamma
Temperature Variations

- The threshold voltage varies with temperature due to carrier generation in the substrate --- tends to decrease with increasing temperature
 - ~2mV for every 1°C increase

\[V_t = V_{t0} + \gamma(\sqrt{2\phi_f} + V_{SB} - \sqrt{2\phi_f}) \]

- \(K \) also changes with temperature due to change in mobility
 - Tends to dominate temperature variation for large \(i_D \)

\[I \propto \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2 \]

- Will \(i_D \) increase or decrease with temperature?

\[T_1 \]

\[T_2 > T_1 \]
Where is drain, where is source?

n-channel transistor

p-channel transistor
PMOSFETs

- All of the voltages are negative
- Carrier mobility is about half of what it is for n channels

- The bulk is now connected to the most positive potential in the circuit
- Strong inversion occurs when the channel becomes as p-type as it was n-type
- The inversion layer is a positive charge that is sourced by the larger potential and drained at the smallest potential
- The threshold voltage is negative for an enhancement PMOSFET
 - Note that the flatband voltage (which is negative) effects now tend to increase the PFET threshold while they decreased the NFET threshold
PMOS

- The equations are the same, but all of the voltages are negative
- Triode region:

 \[|v_{GS}| \geq |V_t| \quad |v_{DS}| \leq |v_{GS} - V_t| \]

 \[i_D = K[2(|v_{GS} - V_t|)|v_{DS}| - v_{DS}^2] \quad |K| = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{A}{V^2} \right) \]

- \(i_D \) is also negative --- positive charge flows into the drain
- Saturation expression is the same as it is for NFETs:

 \[i_D \big|_{sat} = K[(v_{GS} - V_t)^2](1 + \lambda |v_{DS}|) \]
PMOS

- Characteristic appears to be the same, except that all of the voltages are negative

![Graph of PMOS characteristics with various gate voltages and drain-source voltages.]

- $W = 1$ micron
- $L = 1$ microns
- $V_{t0} = -1$ volt
- $K_p = 2 \times 10^{-5} (A/V^2)$
- $\phi = -0.6$
- $N_D = 1 \times 10^{15}$
But it is generally displayed as:

- \(W = 1 \text{ micron} \)
- \(L = 1 \text{ microns} \)
- \(V_{t_0} = -1 \text{ volt} \)
- \(K_p = 2 \times 10^{-5} \text{ (A/v}^2) \)
- \(\phi = -0.6 \)
- \(N_D = 1 \times 10^{15} \)
Depletion Mode NMOSFET

- Depletion mode FETs have a channel implanted such that there is conduction with $V_{GS}=0$
- The operation is the same as the enhancement mode FET, but the threshold voltage is shifted
 - V_t is negative for depletion NMOS, and positive for depletion PMOS
Depletion Mode NMOSFET

- Negative gate voltage is required to turn the channel off

\[V_{t0} = -2 \text{ volt} \]

\[K_p = 2 \times 10^{-5} \left(\text{A/v}^2 \right) \]

\[
\begin{array}{c|c|c|c|c|c}
V_{GS} & 0.0V & 1.0V & 2.0V & -1.0V & -2.0V \\
V_{DS} & 0.0 & 0.2 & 0.4 & & \\
\end{array}
\]
Depletion Mode NMOSFET

- The i_{DS} vs. v_{GS} characteristic is still quadratic in saturation

![Graph of i_{DS} vs. v_{GS}]

- $W=1$ micron
- $L=1$ microns
- $V_{t0} = -2$ volt
- $K_p = 2 \times 10^{-5}$ (A/v2)
Examples

- Find the largest value that R_D can have before the transistor fails to operate in saturation

\[V_t = 2\, V \]
\[K_n = 20\, \mu A/V^2 \]
\[L = 10\, \mu m \]
\[W = 400\, \mu m \]
\[\lambda = 0 \]
Examples

- Find the drain currents and voltages for both transistors

\[V_t = 2V \]
\[K_n = 20 \mu A/V^2 \]
\[L = 10 \mu m \]
\[W = 100 \mu m \]
\[\lambda = 0 \]
Examples

- What is the effective resistance of the transistor in the triode region?

\[V_t = 1V \]
\[K = 0.5mA/V^2 \]
Examples

- Select the R’s so that the gate voltage is 4V, the drain voltage is 4V and the current is 1mA.

\[V_t = 2V \]
\[K = 1mA/V^2 \]
\[\lambda = 0 \]
Examples

- Select the R’s so that the transistor is in saturation with a drain current of 1.0mA and a drain voltage of 5V

\[V_t = -1\text{V} \]
\[K = 0.5\text{mA/V}^2 \]
\[\lambda = 0 \]
Examples

• Solve for the drain current and voltage

\[V_t = -2V \]
\[K = 1mA/V^2 \]
\[\lambda = 0 \]