Diode-connected BJT
Current Mirrors

- Current sources are created by mirroring currents
- Example: with infinite β, $I_o = I_{\text{REF}}$
Current Mirrors

- Example: with finite β

- What is the other reason for $I_{\text{REF}} \neq I_o$?
Output Resistance of Current Source, R

- What is the small signal output resistance of this current source, and why do we care?
Simple I_{REF} Model

- Select R to establish the required reference current
Widlar current source

- For a given Vcc, you need large resistor \(R \) values to obtain small current!
- Large resistors are expensive, Widlar current source uses smaller resistor in emitter to reduce achieve the same current?

\[
\begin{align*}
\text{I}_{o}\text{R}_E &= V_{BE1} - V_{BE2} \\
V_{BE1} &= V_T \ln \left(\frac{I_{REF}}{I_s} \right) \\
V_{BE2} &= V_T \ln \left(\frac{I_o}{I_s} \right) \\
V_{BE1} - V_{BE2} &= V_T \ln \left(\frac{I_{REF}}{I_o} \right) \\
\text{I}_{o}\text{R}_E &= V_T \ln \left(\frac{I_{REF}}{I_o} \right)
\end{align*}
\]
Widlar current source vs. ordinary current mirror

- Let us say we need \(I_0 = 10 \mu A \)
- Assume that for \(I = 1mA \) \(V_{BE} = 0.7 \)

\[
I_o R_E = V_T \ln(I_{REF}/I_o)
\]
Widlar current source - output resistance

- If we neglect $R \parallel r_{e1}$, base of Q_2 is on ac ground

- Presence of R_E is increases output resistance to $(1+g_m R_E \parallel r_\pi)r_o$.
 (Read Sec. 6.4 in the textbook!)
Current Steering

- With an I_{REF} established, steer and/or scale the reference value
Reading IC circuit schematics

- Find a path between + power supply and - power supply which sets the reference current (very often there is only one even in a large circuit): Only V_{BE} and resistors are in this path.

- Type of transistor will tell you the expected direction of current: npn - current sink, pnp - current source.

- Identify current mirror configurations (Widlar, Wilson, etc.) and respective emitter areas.

- Proceed from the reference current branch and calculate subsequent currents independently.
Beta Dependence

- When “steered” to several points, the I_o dependence on β can be a problem.
Simple Opamp Example

- First stage is used to reject common mode voltages
- The 2nd diff amp and level shifting stage provide the gain
- The input diff amp also provides the large input resistance
- Why is Q6 designed to be 4x larger than Q3?
Differential Amplifiers: Active Loads

- IC resistors are impractical
- Active loads provide current-source-like loads, hence large small signal gains
Differential Amplifiers: Active Loads

- The output in this example is single-sided, but behaves sort of differentially
- The output is a current, proportional to v_d --- transconductance amplifier

![Circuit Diagram]

- Assuming infinite β, what is the output current when $v_d = 0$?
Common Mode Gain

- If all of the parameter values are exactly matched to one another, and $\beta=100$, will there be any common mode gain?

- Will there be any dc offset?
Small Signal Gain, G_m
Small Signal Gain, G_m
Transconductance Stage of Opamp Model

- The voltage gain of stage 1 depends on the output impedance of stage 1 and the input impedance of stage 2
Transconductance Amplifier Voltage Gain

- Active loads are often designed to maximize R_o