1) Consider a thin film sample of material with its surface normal to the z-direction and infinite in extent in the x and y-directions. When a field are applied in the x-direction are the following M(H) loop is observed.

Consider now that a spatially uniform field is applied to the sample and the surrounding region sufficient to saturate it, as shown below.

a) Give the value of M, H, and B at points P and Q for these cases.

b) What if the applied field is reduced to half of its value in a). Again give the values of M, H and B at points P and Q.

Make sure to specify units, and work in the SI system.
2) Consider a cylindrically magnetized core with the magnetization:

\[
\mathbf{M} = M_0 \frac{r_1}{r} \left[\Theta(r - r_1) - \Theta(r - r_2) \right] \hat{\mathbf{\theta}}
\]

where \(\hat{\mathbf{\theta}} \) is a unit vector in the circumferential direction (everywhere perpendicular to the radial direction), and \(r \) is the coordinate in the radial direction. Note that the magnetic material extends from the inner radius of the core, \(r_1 \) to the outer radius, \(r_2 \).

a) Calculate the “magnetic” current density, \(j_{\text{mag}} \) everywhere in space, by taking a curl of the appropriate quantity in cylindrical coordinates.

b) Using the result in a) find the “magnetic” current, \(i_{\text{mag}} \), within the line contour at radius, \(R \) (shown as a dashed line in the diagram) by integrating over the appropriate area.

c) Combine the result in b) with amperes law and the definition of \(B \) to show the following result for this geometry (which is also true in the general case):

\[
\oint_C \mathbf{B} \cdot d\mathbf{\sigma} = \mu_0 \left(N i_{\text{free}} + i_{\text{mag}} \right)
\]

where the line contour, \(C \), over which the integration is done is, as above, the dashed line at radius, \(R \), and \(d\mathbf{\sigma} \) is a differential element of the line contour, \(C \).