Lecture 1 Summary
8/23/98

- Administrative
 - Class Overview
 - Class Size
 - Class Logistics
 - Lab Topics
 - Expectations

- Lab Practices
 - Measurement
 - Presentation

- Magnetometry
 - Units
 - Basic Concepts

Class Mission

IS
- Train students in “best practice”
- Introduce methods in
 - materials characterization
 - magnetic
 - structural
 - magnetic devices
 - fabrication
 - testing
- Support institutional memory & policy: (heavily web based)

IS NOT
- Theory/Math course
 - Magnetism: 18-715
- Project Course
- Capstone Design (U-Grad’s)
Class Size

- Facilities allow 12 students
- Preference given to:
 - Incoming grad students
 - Students who will train other students
 - Students who will use this in their research
- Return Survey by 5PM on Tuesday

Lectures and Labs

See web page
Logistics
See http://www.ece.cmu.edu/~jbain/39-717

- Lectures
 - Mon 2:30 -4PM/PH A18A
 - Notes on Web Site
- Labs
 - Demos: Thu 9-12AM/Meet PH A19C
 - Training: 2 hrs/wk arranged with TA
 - Indep work and Write-up 4-6 hours/week
 - Write-ups due in two weeks
- Grades
 - Lab Write-ups
 - Final Exam (practical)
- Equip Types
 - mode I: demo only
 - mode II: operate with supervision don’t check out
 - mode III: fully independent operation

Uncertainty and Laboratory Practice

- Examples:
 - “The anisotropy was 34.67 kJ/m³...”
 - “The lattice parameter was 0.3142 nm...”
- Note
 - 0.01/34.67 = 0.03% (N)
 - .0001/0.3142 = 0.03% (Y)
- Rules
 - $X \pm Y$ implies ± 0.01
 - error bars, greater of:
 - standard deviation from multiple, identical tries:
 $$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N - 1}}$$
 - estimated total errors: percentages added

39-717: Laboratory Methods in Data Storage Research
Instructor: J.A. Bain
Graphical Presentation

- Don’t Leave ANY ambiguity
- Don’t Overstate
- Don’t Understate
- Don’t Mislead
- Observe Aesthetic Aspects

The Good, The Bad and The Ugly
Magnetic Units

- **SI System:**
 \[B = \mu_0 (H + M) \]
 - \(B \) \([=] \) V-s/m² (Tesla)
 - \(H \) \([=] \) A/m
 - \(M \) \([=] \) A/m
 - \(\mu_0 \) \([=] \) V-s/A-m (Henry/m)

- **cgs System:**
 \[B = H + 4\pi M \]
 - \(B \) \([=] \) Gauss
 - \(H \) \([=] \) Oe
 - \(M \) \([=] \) emu/cc

Experimental Facts

Ampere’s Law
\[\int_C \mathbf{H} \cdot d\mathbf{l} = \int_T J \cdot d\mathbf{l} \quad \text{or} \quad \nabla \times \mathbf{H} = \mathbf{J} \]

Common Form:
\[\int_C \mathbf{H} \cdot d\mathbf{l} = N \mathbf{i} \]

\(N \) = number of turns

Faraday’s Law
\[\int_C \mathbf{E} \cdot d\mathbf{l} = \frac{d}{dt} \int_C \mathbf{B} \cdot d\mathbf{a} \quad \text{or} \quad \nabla \times \mathbf{E} = -\frac{d\mathbf{B}}{dt} \]

Common Form:
\[V = \frac{d\phi}{dt} \]

\(\phi = b \cdot A \)
Magnetometry I

Features

- Hysteresis Loops
 - Vertical Scale
 - M_r, M_i
 - Horizontal Scale
 - H_c, H_k, H_{sat}
 - Shape
 - $S = M_r/M_i$
 - $S' = 1 - \frac{1}{dM/dH} \frac{M_r}{H_c}$

Magnetometry II

Practice

1: Measure magnetic moment (extensive)
2: Measure volume (extensive)
3: Calculate moment/volume (intensive)

- Errors in both measurements make precision greater than 5% in magnetization level challenging
Magnetometry III:
Moment Density

- Magnetization is moment density: \(m = \text{A} \cdot \text{m}^{-2} \)
- Measurement can be
 - induced voltage:
 \[
 V = -\frac{d\phi}{dt} = \frac{V_{\text{m/s}}}{s}
 \]
 \[
 \phi = B \cdot A \quad \text{[Wb/m^2]} = \frac{V_{\text{s/m}}}{s} \quad \text{or} \quad 20 \text{mS/V}
 \]
 \[
 B = \mu_0 (H + M) \quad \text{[T]} = \frac{V_{\text{s/m}}}{m^2}
 \]
 - force:
 \[
 F = \mu_0 \nabla \left(m \cdot H \right) \quad \text{[N/m]} = \frac{V_{\text{s/m}}}{A \cdot m} \left(\frac{1}{m} \right) \frac{A}{m} = \frac{V_{\text{s/m}}}{A \cdot m \cdot s} \quad \text{or} \quad 2 \text{mS/N}
 \]

Magnetometry IV:
B-H Loopers

- Aspects
 - Induced voltage pickup
 - Only for soft materials
 - Fields
 - \(< 16 \text{ kA/m} (200 \text{ Oe})\)
 - \(\text{AC} (10 \text{ Hz})\)
Magnetometry V: Soft Films

- Easy Axis vs. Hard Axis
 - Can apply field along each one
 - Determined by directional energy variation
 - Simplest form: uniaxial anisotropy, K_u
 \[E = K_u \sin^2 \theta \]
 \[\text{(J/m}^2) \] \[\text{(J/m}^2) \]

\[(\text{E.A.}) \]

\[\text{(H.A.)} \]

\[H_c \]

\[H \]

\[K \]

\[M \]

\[M \]

\[M_i \]

\[H_k \]