Incremental Reconfiguration for Pipelined Applications

Herman Schmit
Dept. of ECE
Carnegie Mellon University
Motivation

- **Forward-compatibility**
 - Preserve "software" investment
 - Expectation:
 - Future generations More performance

- **Soft limits**
 - Expectation:
 - Software runs on any compatible platform
Current State of FPGA Computing

- **Process improvements:**
 - Faster, bigger FPGAs
 - Cannot exploit increased area w/o redesign
 - Redesign: expensive

- **Resource requirements are exact**
 - One cell too few ⇒ doesn’t fit
 - Extra cells ⇒ wasted
Our Vision

- Design for Infinite hardware
 - “Virtual” hardware design
 - Exploit as much parallelism as possible

- Time-multiplex on real hardware
 - Minimal hardware: functional
 - Increased hardware: higher performance
 - Until Real = Virtual
 - Run-time Reconfiguration (RTR)

- Regularly Pipelined Applications
Overview

- RTR for Pipelined Applications
 - Reconfiguration techniques
 - Component-level reconfiguration
 - Incremental reconfiguration
 - Throughput, Latency, and Memory

- Striped Reconfiguration
 - Support for incremental reconfiguration
 - Concurrent configuration and execution

- Example Application: IDEA encryption

- Conclusions
Application Definitions

Application: Static Implementation:

S stages ($S = 8$)

N FPGAs ($N = 2$)

T cycle time

Throughput: $\frac{1}{T}$
Run-Time Reconfiguration

- Assume we only have 1 FPGA
 - Time-multiplex different parts of pipeline
- Ideal Throughput: reduce by factor N
 \[
 \frac{1}{T \cdot N}
 \]
Component-Level Reconfiguration

Configuration Time: CT
Data items per config: X

© Herman Schmit, 1997
Component-level Throughput

$\frac{T}{N} \left(\frac{X}{N} + \frac{S}{X} + C\right)$

$= \frac{1}{T \left(\frac{N}{X} + \frac{S}{X} + C \frac{N}{X}\right)}$

Ideal (1/TN)

Throughput

Configure Cycles (C)
Implementation Issues

- Works for any FPGA
- Reduce C or increase X
- C is large
 - XC4030: C = ~100,000
 - XC6216: C = ~3000
- Multiple Context FPGAs
 - DPGA and Xilinx
 - C \Rightarrow 0
 - Still pay the pipeline fill/empty penalty
 - N \leq Contexts

© Herman Schmit, 1997
Increasing X

- **Memory**
 - Increases linearly with \(X \)
 - Too large to fit on-chip?
 - Off-chip memory access drives performance
 - Increases \(T \)

- **Latency**
 - Increases linearly with \(X \)
 - Real-time applications have latency limitations
Incremental Reconfiguration

Time

Config Time: \(C_T (N / S) \)

© Herman Schmit, 1997
Incremental Performance

Throughput:

\[
\text{Throughput} = \frac{S / N}{T (S + (S / N) - 1) + T N C} = \frac{1}{T (N + N^2 C / S)}
\]

Diagram showing throughput as a function of configure cycles (C) with data execute and configure components labeled. The graph compares ideal throughput to incremental and component X = 10.
Implementation Issues

- No pipeline penalty
 - Difference important when C is small
- No storage required
 - Intermediate stored in fabric
- Low latency

- Requires:
 - partially reconfigurable FPGA
 - unusual interconnect
Virtualization

- More physical hardware = more throughput
Virtualization

- Reducing N (more hardware)

- C is still important
Concurrent Configuration

- How can we reduce C?
- Configuration concurrent with execution
 - Execute stage n, n-1, n-2, ...
 - Configure stage n+1
 - C \Rightarrow 0, Ideal throughput
- No FPGA supports this
- Striped reconfiguration
Striped Reconfiguration

- Need to load one pipestage every cycle
 - Store virtual design on-chip
 - Wide configuration bus (~1024 bits)

FPGA Fabric

Configuration Cache

Chip Boundary

© Herman Schmit, 1997
Striped Reconfiguration

- Load rows (stripes) of the FPGA
- Rows implement pipeline stages
- Uniform interconnect:
 - Global and neighbor
 - Only relative placement is important
Row Architecture
Row Placement and Interconnect

- Configuration Moves
 - Local Interconnect

- Stationary: SRAM Interconnect Problem

- Stationary: SRAM Ring Interconnect

© Herman Schmit, 1997
Example: IDEA Encryption

- Widely used: PGP
- Completely Pipelineable
- BIG: 32 32-bit multipliers

© Herman Schmit, 1997
Accelerating IDEA

- One cm² of silicon (0.35μm):
 - 32 rows of active FPGA
 - 256 rows of stored configuration
 - 50 MHz operation

- Deep pipeline:
 - 232 16-bit stages
 - 538 Mb/sec with 32 rows
 - 177 Mb/sec on 25 MHz VLSI chip (1 cm², 1.2 μm, 1993)
 - Scales to 3.2 Gb/sec with 232 rows
Other Deeply Pipelined Applications

- Sandia Labs’ ATR Algorithms
- Image recognition and understanding
- Image and Signal Processing
- Genetic Algorithms for EDA
Summary

- Incremental Pipeline reconfiguration
 - High throughput, low latency, low memory

- Striped Reconfiguration
 - Concurrent configuration and execution
 - No reconfiguration time
 - Local and global interconnect
 - Ring structure for local interconnect

- Forward-compatibility, soft resource limits
 - Performance increases until Real = Virtual