MisterTEA

128-bit TEA Encryption Chip

Size of design: **496\mu m \times 498\mu m**

Transistor count: **13,098 transistors**

Transistor Density: **18.9 \mu m^2/\text{transistor}**

Clock Frequency: **83 MHz***

Data Rate: **100 Mbit/sec**

Features:

- 8-bit input/output ports
 - Reduce demand on I/O speed
 - Latch in directly to core registers
 - Eliminate need for input/output buffer

- 32-bit Carry Lookahead Adder (3.5ns)
 - Optimized critical path (18% perf. gain)
 - Fine-tuned custom gate design
 - Compact layout provides routability

- CPL logic for 3-Input XOR (0.3ns)
 - Very compact design
 - Offer both output and inverted output
 - Superb performance

- Delayed datapath clock signal
 - Make use the delay through clock buffer
 - Allow control path to run ahead
 - Hide control delays, improve performance

- Latches for Key and Delta
 - Compact size
 - Store 160 bits of data
 - Use 4.1% of chip area

Description:

The 128-bit TEA Encryption Chip is a high performance encryption chip that implements the Tiny Encryption Algorithm in hardware. It is designed using the HP.35um technology.

The chip takes a 128-bit key, goes through 32 fast iterations of a simple routine to scramble one 64-bit data-block at a time. It has a simple, yet flexible interface with support for easy integration on an asynchronous bus. Developed for securing multiple digital communication channels, it supports time-division multiple access architectures with zero task-switch overhead.

The 128-bit TEA Encryption Chip adds one more level of security to any digital communication channel completely transparent to the user.

* Due to computing resource limitations, only piecewise critical path and whole chip schematics are verified. All successful simulations confirmed the expected performance.
Encryption Instruction

1) Assert RESET = 1 for at least 2ns
2) Set \{PROG, DinVALID\} = \{1,0\}
3) Wait for RDY4in be asserted
4) To program the key,
 set \{PROG, KEYDELTA\} = \{0,1\}
5) Send the low byte of key to dataIN
6) De-assert PROG (PROG = 0)
7) Send the rest of the key. (Big Endian order)
8) Wait for RDY4in be asserted
9) To program the delta,
 set \{PROG, KEYDELTA\} = \{0,0\}
10) Send the low byte of delta to dataIN
11) De-assert PROG (PROG = 0)
12) Send the rest of the delta
13) Wait for RDY4in be asserted
14) To encrypt, set \{PROG, KEYDELTA, PASS, ENCRY\} = \{1,0,0,1\}
15) Send the high byte of data to dataIN
16) Set DinVALID = 1
17) Send the rest of the data (Little Endian)
18) Wait for the DoutRDY assertion
19) When DoutRDY is asserted, valid encrypted output will appear on dataOUT (Little Endian)

Abstract

The Tiny Encryption Algorithm (TEA) is one of the fastest and most efficient cryptographic algorithms in existence. It encrypts 64 data bits at a time using a 128-bit key, and seems highly resistant to differential cryptanalysis.

Our chip employs the HP .35um technology and contains 13,098 transistors. The design incorporates static and complimentary pass-gate logic and implements components such as 32-bit logarithmic 2-bit carry look-ahead adder/subtractor, 128-bit latch array, and 64-bit registers with sub-nanosecond access time.

With a peak data rate reaching the order of 100Mbits/sec, this chip can be used to secure high-speed local area networks, such as 100-Mbit Ethernet. In addition, its compact size also enables it to be embedded into a wide range of wireless communication equipments.

Yue Chang
Jike Chong
Chirag Shah
Chris verBurg