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ABSTRACT
Data compression is a promising approach for meeting the increas-
ing memory capacity demands expected in future systems. Un-
fortunately, existing compression algorithms do not translate well
when directly applied to main memory because they require the
memory controller to perform non-trivial computation to locate a
cache line within a compressed memory page, thereby increasing
access latency and degrading system performance. Prior propos-
als for addressing this performance degradation problem are either
costly or energy inefficient.

By leveraging the key insight that all cache lines within a page
should be compressed to the same size, this paper proposes a new
approach to main memory compression—Linearly Compressed
Pages (LCP)—that avoids the performance degradation problem
without requiring costly or energy-inefficient hardware. We show
that any compression algorithm can be adapted to fit the require-
ments of LCP, and we specifically adapt two previously-proposed
compression algorithms to LCP: Frequent Pattern Compression and
Base-Delta-Immediate Compression.

Evaluations using benchmarks from SPEC CPU2006 and five
server benchmarks show that our approach can significantly in-
crease the effective memory capacity (by 69% on average). In
addition to the capacity gains, we evaluate the benefit of trans-
ferring consecutive compressed cache lines between the memory
controller and main memory. Our new mechanism considerably
reduces the memory bandwidth requirements of most of the eval-
uated benchmarks (by 24% on average), and improves overall per-
formance (by 6.1%/13.9%/10.7% for single-/two-/four-core work-
loads on average) compared to a baseline system that does not em-
ploy main memory compression. LCP also decreases energy con-
sumed by the main memory subsystem (by 9.5% on average over
the best prior mechanism).

Categories and Subject Descriptors
B.3.1 [Semiconductor Memories]: Dynamic memory (DRAM);
D.4.2 [Storage Management]: Main memory; E.4 [Coding and
Information Theory]: Data compaction and compression
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1. INTRODUCTION
Main memory, commonly implemented using DRAM technol-

ogy, is a critical resource in modern systems. To avoid the devas-
tating performance loss resulting from frequent page faults, main
memory capacity must be sufficiently provisioned to prevent the
target workload’s working set from overflowing into the orders-of-
magnitude-slower backing store (e.g., hard disk or flash).

Unfortunately, the required minimum memory capacity is ex-
pected to increase in the future due to two major trends: (i) appli-
cations are generally becoming more data-intensive with increasing
working set sizes, and (ii) with more cores integrated onto the same
chip, more applications are running concurrently on the system,
thereby increasing the aggregate working set size. Simply scaling
up main memory capacity at a commensurate rate is unattractive for
two reasons: (i) DRAM already constitutes a significant portion of
the system’s cost and power budget [19], and (ii) for signal integrity
reasons, today’s high frequency memory channels prevent many
DRAM modules from being connected to the same channel [17],
effectively limiting the maximum amount of DRAM in a system
unless one resorts to expensive off-chip signaling buffers [6].

If its potential could be realized in practice, data compression
would be a very attractive approach to effectively increase main
memory capacity without requiring significant increases in cost
or power, because a compressed piece of data can be stored in a
smaller amount of physical memory. Further, such compression
could be hidden from application (and most system1) software by
materializing the uncompressed data as it is brought into the pro-
cessor cache. Building upon the observation that there is significant
redundancy in in-memory data, previous work has proposed a vari-
ety of techniques for compressing data in caches [2, 3, 5, 12, 25, 37,
39] and in main memory [1, 7, 8, 10, 35].

1.1 Shortcomings of Prior Approaches
A key stumbling block to making data compression practical

is that decompression lies on the critical path of accessing any
compressed data. Sophisticated compression algorithms, such as
Lempel-Ziv and Huffman encoding [13,40], typically achieve high
compression ratios at the expense of large decompression latencies

1We assume that main memory compression is made visible to the
memory management functions of the operating system (OS). In
Section 2.3, we discuss the drawbacks of a design that makes main
memory compression mostly transparent to the OS [1].
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that can significantly degrade performance. To counter this prob-
lem, prior work [3,25,39] on cache compression proposed special-
ized compression algorithms that exploit regular patterns present
in in-memory data, and showed that such specialized algorithms
have reasonable compression ratios compared to more complex al-
gorithms while incurring much lower decompression latencies.

While promising, applying compression algorithms, sophisti-
cated or simpler, to compress data stored in main memory requires
first overcoming the following three challenges. First, main mem-
ory compression complicates memory management, because the
operating system has to map fixed-size virtual pages to variable-
size physical pages. Second, because modern processors employ
on-chip caches with tags derived from the physical address to avoid
aliasing between different cache lines (as physical addresses are
unique, while virtual addresses are not), the cache tagging logic
needs to be modified in light of memory compression to take the
main memory address computation off the critical path of latency-
critical L1 cache accesses. Third, in contrast with normal virtual-
to-physical address translation, the physical page offset of a cache
line is often different from the corresponding virtual page offset,
because compressed physical cache lines are smaller than their cor-
responding virtual cache lines. In fact, the location of a compressed
cache line in a physical page in main memory depends upon the
sizes of the compressed cache lines that come before it in that same
physical page. As a result, accessing a cache line within a com-
pressed page in main memory requires an additional layer of ad-
dress computation to compute the location of the cache line in main
memory (which we will call the main memory address). This addi-
tional main memory address computation not only adds complex-
ity and cost to the system, but it can also increase the latency of
accessing main memory (e.g., it requires up to 22 integer addition
operations in one prior design for main memory compression [10]),
which in turn can degrade system performance.

While simple solutions exist for these first two challenges (as we
describe later in Section 4), prior attempts to mitigate the perfor-
mance degradation of the third challenge are either costly or inef-
ficient [1, 10]. One approach (IBM MXT [1]) aims to reduce the
number of main memory accesses, the cause of long-latency main
memory address computation, by adding a large (32MB) uncom-
pressed cache managed at the granularity at which blocks are com-
pressed (1KB). If locality is present in the program, this approach
can avoid the latency penalty of main memory address computa-
tions to access compressed data. Unfortunately, its benefit comes
at a significant additional area and energy cost, and the approach
is ineffective for accesses that miss in the large cache. A second
approach [10] aims to hide the latency of main memory address
computation by speculatively computing the main memory address
of every last-level cache request in parallel with the cache access
(i.e., before it is known whether or not the request needs to access
main memory). While this approach can effectively reduce the per-
formance impact of main memory address computation, it wastes a
significant amount of energy (as we show in Section 7.3) because
many accesses to the last-level cache do not result in an access to
main memory.

1.2 Our Approach: Linearly Compressed
Pages

We aim to build a main memory compression framework that
neither incurs the latency penalty for memory accesses nor requires
power-inefficient hardware. Our goals are: (i) having low com-
plexity and low latency (especially when performing memory ad-
dress computation for a cache line within a compressed page), (ii)
being compatible with compression employed in on-chip caches

(thereby minimizing the number of compressions/decompressions
performed), and (iii) supporting compression algorithms with high
compression ratios.

To this end, we propose a new approach to compress pages,
which we call Linearly Compressed Pages (LCP). The key idea
of LCP is to compress all of the cache lines within a given page to
the same size. Doing so simplifies the computation of the physi-
cal address of the cache line, because the page offset is simply the
product of the index of the cache line and the compressed cache line
size (i.e., it can be calculated using a simple shift operation). Based
on this idea, a target compressed cache line size is determined for
each page. Cache lines that cannot be compressed to the target size
for its page are called exceptions. All exceptions, along with the
metadata required to locate them, are stored separately in the same
compressed page. If a page requires more space in compressed
form than in uncompressed form, then this page is not compressed.
The page table indicates the form in which the page is stored.

The LCP framework can be used with any compression al-
gorithm. We adapt two previously proposed compression algo-
rithms (Frequent Pattern Compression (FPC) [2] and Base-Delta-
Immediate Compression (BDI) [25]) to fit the requirements of LCP,
and show that the resulting designs can significantly improve effec-
tive main memory capacity on a wide variety of workloads.

Note that, throughout this paper, we assume that compressed
cache lines are decompressed before being placed in the processor
caches. LCP may be combined with compressed cache designs by
storing compressed lines in the higher-level caches (as in [2, 25]),
but the techniques are largely orthogonal, and for clarity, we present
an LCP design where only main memory is compressed.2

An additional, potential benefit of compressing data in main
memory, which has not been fully explored by prior work on main
memory compression, is memory bandwidth reduction. When data
are stored in compressed format in main memory, multiple consec-
utive compressed cache lines can be retrieved at the cost of access-
ing a single uncompressed cache line. Given the increasing demand
on main memory bandwidth, such a mechanism can significantly
reduce the memory bandwidth requirement of applications, espe-
cially those with high spatial locality. Prior works on bandwidth
compression [27, 32, 36] assumed efficient variable-length off-chip
data transfers that are hard to achieve with general-purpose DRAM
(e.g., DDR3 [23]). We propose a mechanism that enables the mem-
ory controller to retrieve multiple consecutive cache lines with a
single access to DRAM, with negligible additional cost. Evalua-
tions show that our mechanism provides significant bandwidth sav-
ings, leading to improved system performance.

In summary, this paper makes the following contributions:

• We propose a new main memory compression framework—
Linearly Compressed Pages (LCP)—that solves the prob-
lem of efficiently computing the physical address of a com-
pressed cache line in main memory with much lower cost
and complexity than prior proposals. We also demonstrate
that any compression algorithm can be adapted to fit the re-
quirements of LCP.

• We evaluate our design with two state-of-the-art compres-
sion algorithms (FPC [2] and BDI [25]), and observe that it
can significantly increase the effective main memory capac-
ity (by 69% on average).

• We evaluate the benefits of transferring compressed cache
lines over the bus between DRAM and the memory controller

2We show the results from combining main memory and cache
compression in our technical report [26].
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and observe that it can considerably reduce memory band-
width consumption (24% on average), and improve over-
all performance by 6.1%/13.9%/10.7% for single-/two-/four-
core workloads, relative to a system without main memory
compression. LCP also decreases the energy consumed by
the main memory subsystem (9.5% on average over the best
prior mechanism).

2. BACKGROUND ON MAIN MEMORY
COMPRESSION

Data compression is widely used in storage structures to in-
crease the effective capacity and bandwidth without significantly
increasing the system cost and power consumption. One primary
downside of compression is that the compressed data must be de-
compressed before it can be used. Therefore, for latency-critical
applications, using complex dictionary-based compression algo-
rithms [40] significantly degrades performance due to their high
decompression latencies. Thus, prior work on compression of in-
memory data has proposed simpler algorithms with low decom-
pression latencies and reasonably high compression ratios, as dis-
cussed next.

2.1 Compressing In-Memory Data
Several studies [2, 3, 25, 39] have shown that in-memory data

has exploitable patterns that allow for simpler compression tech-
niques. Frequent value compression (FVC) [39] is based on the
observation that an application’s working set is often dominated by
a small set of values. FVC exploits this observation by encoding
such frequently-occurring 4-byte values with fewer bits. Frequent
pattern compression (FPC) [3] shows that a majority of words (4-
byte elements) in memory fall under a few frequently occurring
patterns. FPC compresses individual words within a cache line by
encoding the frequently occurring patterns with fewer bits. Base-
Delta-Immediate (BDI) compression [25] observes that, in many
cases, words co-located in memory have small differences in their
values. BDI compression encodes a cache line as a base-value and
an array of differences that represent the deviation either from the
base-value or from zero (for small values) for each word. These
three low-latency compression algorithms have been proposed for
on-chip caches, but can be adapted for use as part of the main mem-
ory compression framework proposed in this paper.

2.2 Challenges in Memory Compression
LCP leverages the fixed-size memory pages of modern systems

for the basic units of compression. However, three challenges arise
from the fact that different pages (and cache lines within a page)
compress to different sizes depending on data compressibility.

Challenge 1: Main Memory Page Mapping. Irregular page
sizes in main memory complicate the memory management mod-
ule of the operating system for two reasons (as shown in Figure 1).
First, the operating system needs to allow mappings between the
fixed-size virtual pages presented to software and the variable-size
physical pages stored in main memory. Second, the operating sys-
tem must implement mechanisms to efficiently handle fragmenta-
tion in main memory.
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Figure 1: Main Memory Page Mapping Challenge

Challenge 2: Physical Address Tag Computation. On-chip
caches (including L1 caches) typically employ tags derived from
the physical address of the cache line to avoid aliasing, and in such
systems, every cache access requires the physical address of the
corresponding cache line to be computed. Hence, because the main
memory addresses of the compressed cache lines differ from the
nominal physical addresses of those lines, care must be taken that
the computation of cache line tag does not lengthen the critical path
of latency-critical L1 cache accesses.

Challenge 3: Cache Line Address Computation. When main
memory is compressed, different cache lines within a page can be
compressed to different sizes. The main memory address of a cache
line is therefore dependent on the sizes of the compressed cache
lines that come before it in the page. As a result, the processor
(or the memory controller) must explicitly compute the location of
a cache line within a compressed main memory page before ac-
cessing it (Figure 2), e.g., as in [10]. This computation not only
increases complexity, but can also lengthen the critical path of ac-
cessing the cache line from both the main memory and the physi-
cally addressed cache. Note that systems that do not employ main
memory compression do not suffer from this problem because the
offset of a cache line within the physical page is the same as the
offset of the cache line within the corresponding virtual page.

LN-1· · · L1 L2Uncompressed Page

0 64 128 (N-1)×64Address Offset

L0

Cache Line (64B)

Compressed Page LN-1· · · L1 L2

? ? ?

L0

0Address Offset

Figure 2: Cache Line Address Computation Challenge

As will be seen shortly, while prior research efforts have con-
sidered subsets of these challenges, this paper is the first design
that provides a holistic solution to all three challenges, particularly
Challenge 3, with low latency and low (hardware and software)
complexity.

2.3 Prior Work on Memory Compression
Of the many prior works on using compression for main memory

(e.g., [1, 7, 8, 10, 18, 27, 35]), two in particular are the most closely
related to the design proposed in this paper, because both of them
are mostly hardware designs. We describe these two designs along
with their shortcomings.

Tremaine et al. [34] proposed a memory controller design, Pin-
nacle, based on IBM’s Memory Extension Technology (MXT) [1]
that employed Lempel-Ziv compression [40] to manage main mem-
ory. To address the three challenges described above, Pinnacle em-
ploys two techniques. First, Pinnacle internally uses a 32MB last
level cache managed at a 1KB granularity, same as the granularity
at which blocks are compressed. This cache reduces the number of
accesses to main memory by exploiting locality in access patterns,
thereby reducing the performance degradation due to the address
computation (Challenge 3). However, there are several drawbacks
to this technique: (i) such a large cache adds significant area and
energy costs to the memory controller, (ii) the approach requires
the main memory address computation logic to be present and used
when an access misses in the 32MB cache, and (iii) if caching is not
effective (e.g., due to lack of locality or larger-than-cache working
set sizes), this approach cannot reduce the performance degradation
due to main memory address computation. Second, to avoid com-
plex changes to the operating system and on-chip cache-tagging
logic, Pinnacle introduces a real address space between the vir-
tual and physical address spaces. The real address space is uncom-
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pressed and is twice the size of the actual available physical mem-
ory. The operating system maps virtual pages to same-size pages
in the real address space, which addresses Challenge 1. On-chip
caches are tagged using the real address (instead of the physical
address, which is dependent on compressibility), which effectively
solves Challenge 2. On a miss in the 32MB cache, Pinnacle maps
the corresponding real address to the physical address of the com-
pressed block in main memory, using a memory-resident mapping-
table managed by the memory controller. Following this, Pinnacle
retrieves the compressed block from main memory, performs de-
compression and sends the data back to the processor. Clearly, the
additional access to the memory-resident mapping table on every
cache miss significantly increases the main memory access latency.
In addition to this, Pinnacle’s decompression latency, which is on
the critical path of a memory access, is 64 processor cycles.

Ekman and Stenström [10] proposed a main memory compres-
sion design to address the drawbacks of MXT. In their design,
the operating system maps the uncompressed virtual address space
directly to a compressed physical address space. To compress
pages, they use a variant of the Frequent Pattern Compression tech-
nique [2, 3], which has a much smaller decompression latency (5
cycles) than the Lempel-Ziv compression in Pinnacle (64 cycles).
To avoid the long latency of a cache line’s main memory address
computation (Challenge 3), their design overlaps this computation
with the last-level (L2) cache access. For this purpose, their design
extends the page table entries to store the compressed sizes of all
the lines within the page. This information is loaded into a hard-
ware structure called the Block Size Table (BST). On an L1 cache
miss, the BST is accessed in parallel with the L2 cache to compute
the exact main memory address of the corresponding cache line.
While the proposed mechanism reduces the latency penalty of ac-
cessing compressed blocks by overlapping main memory address
computation with L2 cache access, the main memory address com-
putation is performed on every L2 cache access (as opposed to only
on L2 cache misses in LCP). This leads to significant wasted work
and additional power consumption. Even though BST has the same
number of entries as the translation lookaside buffer (TLB), its size
is at least twice that of the TLB [10]. This adds to the complex-
ity and power consumption of the system significantly. To address
Challenge 1, the operating system uses multiple pools of fixed-size
physical pages. This reduces the complexity of managing physi-
cal pages at a fine granularity. Ekman and Stenstrom [10] do not
address Challenge 2.

In summary, prior work on hardware-based main memory com-
pression mitigate the performance degradation due to the main
memory address computation problem (Challenge 3) by either
adding large hardware structures that consume significant area and
power [1] or by using techniques that require energy-inefficient
hardware and lead to wasted energy [10].

3. LINEARLY COMPRESSED PAGES
In this section, we provide the basic idea and a brief overview of

our proposal, Linearly Compressed Pages (LCP), which overcomes
the aforementioned shortcomings of prior proposals. Further de-
tails will follow in Section 4.

3.1 LCP: Basic Idea
The main shortcoming of prior approaches to main memory

compression is that different cache lines within a physical page can
be compressed to different sizes based on the compression scheme.
As a result, the location of a compressed cache line within a phys-
ical page depends on the sizes of all the compressed cache lines
before it in the same page. This requires the memory controller to
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Figure 3: Organization of a Linearly Compressed Page

explicitly perform this complex calculation (or cache the mapping
in a large, energy-inefficient structure) in order to access the line.

To address this shortcoming, we propose a new approach to com-
pressing pages, called the Linearly Compressed Page (LCP). The
key idea of LCP is to use a fixed size for compressed cache lines
within a given page (alleviating the complex and long-latency main
memory address calculation problem that arises due to variable-size
cache lines), and yet still enable a page to be compressed even if
not all cache lines within the page can be compressed to that fixed
size (enabling high compression ratios).

Because all the cache lines within a given page are compressed
to the same size, the location of a compressed cache line within the
page is simply the product of the index of the cache line within the
page and the size of the compressed cache line—essentially a linear
scaling using the index of the cache line (hence the name Linearly
Compressed Page). LCP greatly simplifies the task of computing a
cache line’s main memory address. For example, if all cache lines
within a page are compressed to 16 bytes, the byte offset of the third
cache line (index within the page is 2) from the start of the physical
page is 16× 2 = 32, if the line is compressed. This computation
can be implemented as a simple shift operation.

Figure 3 shows the organization of an example Linearly Com-
pressed Page, based on the ideas described above. In this example,
we assume that a virtual page is 4KB, an uncompressed cache line
is 64B, and the target compressed cache line size is 16B.

As shown in the figure, the LCP contains three distinct regions.
The first region, the compressed data region, contains a 16-byte
slot for each cache line in the virtual page. If a cache line is com-
pressible, the corresponding slot stores the compressed version of
the cache line. However, if the cache line is not compressible,
the corresponding slot is assumed to contain invalid data. In our
design, we refer to such an incompressible cache line as an “ex-
ception”. The second region, metadata, contains all the necessary
information to identify and locate the exceptions of a page. We
provide more details on what exactly is stored in the metadata re-
gion in Section 4.2. The third region, the exception storage, is the
place where all the exceptions of the LCP are stored in their un-
compressed form. Our LCP design allows the exception storage
to contain unused space. In other words, not all entries in the ex-
ception storage may store valid exceptions. As we will describe
in Section 4, this enables the memory controller to use the unused
space for storing future exceptions, and also simplifies the operat-
ing system page management mechanism.

Next, we will provide a brief overview of the main memory com-
pression framework we build using LCP.

3.2 LCP Operation
Our LCP-based main memory compression framework consists

of components that handle three key issues: (i) page compression,
(ii) cache line reads from main memory, and (iii) cache line write-
backs into main memory. Figure 4 shows the high-level design and
operation.
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Page Compression. When a page is accessed for the first time
from disk, the operating system (with the help of the memory con-
troller) first determines whether the page is compressible using the
compression algorithm employed by the framework (described in
Section 4.7). If the page is compressible, the OS allocates a physi-
cal page of appropriate size and stores the compressed page (LCP)
in the corresponding location. It also updates the relevant portions
of the corresponding page table mapping to indicate (i) whether the
page is compressed, and if so, (ii) the compression scheme used to
compress the page (details in Section 4.1).

Cache Line Read. When the memory controller receives a read
request for a cache line within an LCP, it must find and decom-
press the data. Multiple design solutions are possible to perform
this task efficiently. A naïve way of reading a cache line from an
LCP would require at least two accesses to the corresponding page
in main memory. First, the memory controller accesses the meta-
data in the LCP to determine whether the cache line is stored in
the compressed format. Second, based on the result, the controller
either (i) accesses the cache line from the compressed data region
and decompresses it, or (ii) accesses it uncompressed from the ex-
ception storage.

To avoid two accesses to main memory, we propose two opti-
mizations that enable the controller to retrieve the cache line with
the latency of just one main memory access in the common case.
First, we add a small metadata (MD) cache to the memory con-
troller that caches the metadata of the recently accessed LCPs—the
controller avoids the first main memory access to the metadata in
cases when the metadata is present in the MD cache. Second, in
cases when the metadata is not present in the metadata cache, the
controller speculatively assumes that the cache line is stored in the
compressed format and first accesses the data corresponding to the
cache line from the compressed data region. The controller then
overlaps the latency of the cache line decompression with the ac-
cess to the metadata of the LCP. In the common case, when the
speculation is correct (i.e., the cache line is actually stored in the
compressed format), this approach significantly reduces the latency
of serving the read request. In the case of a misspeculation (uncom-
mon case), the memory controller issues another request to retrieve
the cache line from the exception storage.

Cache Line Writeback. If the memory controller receives a
request for a cache line writeback, it then attempts to compress
the cache line using the compression scheme associated with the
corresponding LCP. Depending on the original state of the cache
line (compressible or incompressible), there are four different pos-
sibilities: the cache line (1) was compressed and stays compressed,
(2) was uncompressed and stays uncompressed, (3) was uncom-
pressed but becomes compressed, and (4) was compressed but be-
comes uncompressed. In the first two cases, the memory controller
simply overwrites the old data with the new data at the same lo-
cation associated with the cache line. In case 3, the memory con-
troller frees the exception storage slot for the cache line and writes
the compressible data in the compressed data region of the LCP.
(Section 4.2 provides more details on how the exception storage is
managed.) In case 4, the memory controller checks whether there
is enough space in the exception storage region to store the uncom-

pressed cache line. If so, it stores the cache line in an available
slot in the region. If there are no free exception storage slots in the
exception storage region of the page, the memory controller traps
to the operating system, which migrates the page to a new location
(which can also involve page recompression). In both cases 3 and
4, the memory controller appropriately modifies the LCP metadata
associated with the cache line’s page.

Note that in the case of an LLC writeback to main memory (and
assuming that TLB information is not available at the LLC), the
cache tag entry is augmented with the same bits that are used to
augment page table entries. Cache compression mechanisms, e.g.,
FPC [2] and BDI [25], already have the corresponding bits for en-
coding, so that the tag size overhead is minimal when main memory
compression is used together with cache compression.

4. DETAILED DESIGN
In this section, we provide a detailed description of LCP, along

with the changes to the memory controller, operating system and
on-chip cache tagging logic. In the process, we explain how
our proposed design addresses each of the three challenges (Sec-
tion 2.2).

4.1 Page Table Entry Extension
To keep track of virtual pages that are stored in compressed for-

mat in main memory, the page table entries need to be extended
to store information related to compression (Figure 5). In addi-
tion to the information already maintained in the page table en-
tries (such as the base address for a corresponding physical page,
p-base), each virtual page in the system is associated with the fol-
lowing pieces of metadata: (i) c-bit, a bit that indicates if the page
is mapped to a compressed physical page (LCP), (ii) c-type, a
field that indicates the compression scheme used to compress the
page, (iii) c-size, a field that indicates the size of the LCP, and
(iv) c-base, a p-base extension that enables LCPs to start at an ad-
dress not aligned with the virtual page size. The number of bits
required to store c-type, c-size and c-base depends on the exact
implementation of the framework. In the implementation we eval-
uate, we assume 3 bits for c-type (allowing 8 possible different
compression encodings), 2 bits for c-size (4 possible page sizes:
512B, 1KB, 2KB, 4KB), and 3 bits for c-base (at most eight 512B
compressed pages can fit into a 4KB uncompressed slot). Note that
existing systems usually have enough unused bits (up to 15 bits in
Intel x86-64 systems [15]) in their PTE entries that can be used by
LCP without increasing the PTE size.

Processor
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DRAM
Core

Compress/
Decompress

Last-Level
Cache

TLB MD Cache

Memory
Controller

Page Table Entry

c-size(2b)

c-bit(1b)
c-type(3b)

c-base(3b)

p-base

Figure 5: Page table entry extension.

When a virtual page is compressed (the c-bit is set), all the com-
pressible cache lines within the page are compressed to the same
size, say C ∗. The value of C ∗ is uniquely determined by the com-
pression scheme used to compress the page, i.e., the c-type (Sec-
tion 4.7 discusses determining the c-type for a page). We next
describe the LCP organization in more detail.

4.2 LCP Organization
We will discuss each of an LCP’s three regions in turn. We begin

by defining the following symbols: V is the virtual page size of
the system (e.g., 4KB); C is the uncompressed cache line size (e.g.,
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Figure 6: Physical memory layout with the LCP framework.

64B);3 n = V
C is the number of cache lines per virtual page (e.g.,

64); and M is the size of LCP’s metadata region. In addition, on
a per-page basis, we define P to be the compressed physical page
size; C ∗ to be the compressed cache line size; and navail to be the
number of slots available for exceptions.

4.2.1 Compressed Data Region
The compressed data region is a contiguous array of n slots each

of size C ∗. Each one of the n cache lines in the virtual page is
mapped to one of the slots, irrespective of whether the cache line is
compressible or not. Therefore, the size of the compressed data
region is nC ∗. This organization simplifies the computation re-
quired to determine the main memory address for the compressed
slot corresponding to a cache line. More specifically, the address
of the compressed slot for the ith cache line can be computed as
p-base+m-size∗c-base+(i−1)C ∗, where the first two terms cor-
respond to the start of the LCP (m-size equals to the minimum page
size, 512B in our implementation) and the third indicates the off-
set within the LCP of the ith compressed slot (see Figure 6). Thus,
computing the main memory address of a compressed cache line re-
quires one multiplication (can be implemented as a shift) and two
additions independent of i (fixed latency). This computation re-
quires a lower latency and simpler hardware than prior approaches
(e.g., up to 22 additions in the design proposed in [10]), thereby ef-
ficiently addressing Challenge 3 (cache line address computation).

4.2.2 Metadata Region
The metadata region of an LCP contains two parts (Figure 7).

The first part stores two pieces of information for each cache line in
the virtual page: (i) a bit indicating whether the cache line is incom-
pressible, i.e., whether the cache line is an exception, e-bit, and (ii)
the index of the cache line in the exception storage, e-index. If the
e-bit is set for a cache line, then the corresponding cache line is
stored uncompressed in location e-index in the exception storage.
The second part of the metadata region is a valid bit (v-bit) vector
to track the state of the slots in the exception storage. If a v-bit is
set, it indicates that the corresponding slot in the exception storage
is used by some uncompressed cache line within the page.

The size of the first part depends on the size of e-index, which
in turn depends on the number of exceptions allowed per page. Be-
cause the number of exceptions cannot exceed the number of cache
lines in the page (n), we will need at most 1+dlog2 ne bits for each
cache line in the first part of the metadata. For the same reason,
we will need at most n bits in the bit vector in the second part of
the metadata. Therefore, the size of the metadata region is given by
3Large pages (e.g., 4MB or 1GB) can be supported with LCP
through minor modifications that include scaling the corresponding
sizes of the metadata and compressed data regions. The exception
area metadata keeps the exception index for every cache line on
a compressed page. This metadata can be partitioned into multi-
ple 64-byte cache lines that can be handled similar to 4KB pages.
The exact “metadata partition” can be easily identified based on the
cache line index within a page.

Metadata Region
e-bit(1b) v-bit(1b)

e-index(6b)
...

64 entries 64b

...

Figure 7: Metadata region, when n = 64.

M = n(1+dlog2 ne)+n bits. Since n is fixed for the entire system,
the size of the metadata region (M ) is the same for all compressed
pages (64B in our implementation).

4.2.3 Exception Storage Region
The third region, the exception storage, is the place where

all incompressible cache lines of the page are stored. If a
cache line is present in the location e-index in the excep-
tion storage, its main memory address can be computed as:
p-base+ m-size ∗ c-base+ nC ∗ + M + e-indexC . The number
of slots available in the exception storage (navail) is dictated by
the size of the compressed physical page allocated by the oper-
ating system for the corresponding LCP. The following equation
expresses the relation between the physical page size (P ), the
compressed cache line size (C ∗) that is determined by c-type, and
the number of available slots in the exception storage (navail):

navail = b(P − (nC ∗+M ))/Cc (1)

As mentioned before, the metadata region contains a bit vector that
is used to manage the exception storage. When the memory con-
troller assigns an exception slot to an incompressible cache line, it
sets the corresponding bit in the bit vector to indicate that the slot is
no longer free. If the cache line later becomes compressible and no
longer requires the exception slot, the memory controller resets the
corresponding bit in the bit vector. In the next section, we describe
the operating system memory management policy that determines
the physical page size (P ) allocated for an LCP, and hence, the
number of available exception slots (navail).

4.3 Operating System Memory Management
The first challenge related to main memory compression is to

provide operating system support for managing variable-size com-
pressed physical pages – i.e., LCPs. Depending on the compression
scheme employed by the framework, different LCPs may be of dif-
ferent sizes. Allowing LCPs of arbitrary sizes would require the
OS to keep track of main memory at a very fine granularity. It
could also lead to fragmentation across the entire main memory at
a fine granularity. As a result, the OS would need to maintain large
amounts of metadata to maintain the locations of individual pages
and the free space, which would also lead to increased complexity.

To avoid this problem, our mechanism allows the OS to man-
age main memory using a fixed number of pre-determined physical
page sizes – e.g., 512B, 1KB, 2KB, 4KB (a similar approach was
proposed in [4] to address the memory allocation problem). For
each one of the chosen sizes, the OS maintains a pool of allocated
pages and a pool of free pages. When a page is compressed for
the first time or recompressed due to overflow (described in Sec-
tion 4.6), the OS chooses the smallest available physical page size
that fits the compressed page. For example, if a page is compressed
to 768B, then the OS allocates a physical page of size 1KB. For a
page with a given size, the available number of exceptions for the
page, navail , can be determined using Equation 1.

4.4 Changes to the Cache Tagging Logic
As mentioned in Section 2.2, modern systems employ

physically-tagged caches to avoid aliasing problems. However, in
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a system that employs main memory compression, using the physi-
cal (main memory) address to tag cache lines puts the main memory
address computation on the critical path of L1 cache access (Chal-
lenge 2). To address this challenge, we modify the cache tagging
logic to use the tuple <physical page base address, cache line in-
dex within the page> for tagging cache lines. This tuple maps to a
unique cache line in the system, and hence avoids aliasing problems
without requiring the exact main memory address to be computed.
The additional index bits are stored within the cache line tag.

4.5 Changes to the Memory Controller
In addition to the changes to the memory controller operation

described in Section 3.2, our LCP-based framework requires two
hardware structures to be added to the memory controller: (i) a
small metadata cache to accelerate main memory lookups in LCP,
and (ii) compression/decompression hardware to perform the com-
pression and decompression of cache lines.

4.5.1 Metadata Cache
As described in Section 3.2, a small metadata cache in the mem-

ory controller enables our approach, in the common case, to re-
trieve a compressed cache block in a single main memory access.
This cache stores the metadata region of recently accessed LCPs so
that the metadata for subsequent accesses to such recently-accessed
LCPs can be retrieved directly from the cache. In our study, we find
that a small 512-entry metadata cache (32KB4) can service 88% of
the metadata accesses on average across all our workloads. Some
applications have lower hit rate, especially sjeng and astar [29]. An
analysis of these applications reveals that their memory accesses
exhibit very low locality. As a result, we also observed a low TLB
hit rate for these applications. Because TLB misses are costlier than
MD cache misses (the former requires multiple memory accesses),
the low MD cache hit rate does not lead to significant performance
degradation for these applications.

We expect the MD cache power to be much lower than the power
consumed by other on-chip structures (e.g., L1 caches), because
the MD cache is accessed much less frequently (hits in any on-chip
cache do not lead to an access to the MD cache).

4.5.2 Compression/Decompression Hardware
Depending on the compression scheme employed with our LCP-

based framework, the memory controller should be equipped with
the hardware necessary to compress and decompress cache lines
using the corresponding scheme. Although our framework does
not impose any restrictions on the nature of the compression al-
gorithm, it is desirable to have compression schemes that have
low complexity and decompression latency – e.g., Frequent Pat-
tern Compression (FPC) [2] and Base-Delta-Immediate Compres-
sion (BDI) [25]. In Section 4.7, we provide more details on how to
adapt any compression algorithm to fit the requirements of LCP and
also the specific changes we made to FPC and BDI as case studies
of compression algorithms that we adapted to the LCP framework.

4.6 Handling Page Overflows
As described in Section 3.2, when a cache line is written back

to main memory, the cache line may switch from being compress-
ible to being incompressible. When this happens, the memory con-
troller should explicitly find a slot in the exception storage for the
uncompressed cache line. However, it is possible that all the slots
in the exception storage are already used by other exceptions in

4We evaluated the sensitivity of performance to MD cache size and
find that 32KB is the smallest size that enables our design to avoid
most of the performance loss due to additional metadata accesses.

the LCP. We call this scenario a page overflow. A page overflow
increases the size of the LCP and leads to one of two scenarios:
(i) the LCP still requires a physical page size that is smaller than the
uncompressed virtual page size (type-1 page overflow), and (ii) the
LCP now requires a physical page size that is larger than the un-
compressed virtual page size (type-2 page overflow).

Type-1 page overflow simply requires the operating system to
migrate the LCP to a physical page of larger size (without recom-
pression). The OS first allocates a new page and copies the data
from the old location to the new location. It then modifies the map-
ping for the virtual page to point to the new location. While in
transition, the page is locked, so any memory request to this page
is delayed. In our evaluations, we stall the application for 20,000
cycles5 when a type-1 overflow occurs; we also find that (on av-
erage) type-1 overflows happen less than once per two million in-
structions. We vary this latency between 10,000–100,000 cycles
and observe that the benefits of our framework (e.g., bandwidth
compression) far outweigh the overhead due to type-1 overflows.

In a type-2 page overflow, the size of the LCP exceeds the un-
compressed virtual page size. Therefore, the OS attempts to re-
compress the page, possibly using a different encoding (c-type).
Depending on whether the page is compressible or not, the OS al-
locates a new physical page to fit the LCP or the uncompressed
page, and migrates the data to the new location. The OS also ap-
propriately modifies the c-bit, c-type and the c-base in the cor-
responding page table entry. Clearly, a type-2 overflow requires
more work from the OS than a type-1 overflow. However, we ex-
pect page overflows of type-2 to occur rarely. In fact, we never
observed a type-2 overflow in our evaluations.

4.6.1 Avoiding Recursive Page Faults
There are two types of pages that require special consideration:

(i) pages that keep internal OS data structures, e.g., pages contain-
ing information required to handle page faults, and (ii) shared data
pages that have more than one page table entry (PTE) mapping to
the same physical page. Compressing pages of the first type can po-
tentially lead to recursive page fault handling. The problem can be
avoided if the OS sets a special do not compress bit, e.g., as a part
of the page compression encoding, so that the memory controller
does not compress these pages. The second type of pages (shared
pages) require consistency across multiple page table entries, such
that when one PTE’s compression information changes, the second
entry is updated as well. There are two possible solutions to this
problem. First, as with the first type of pages, these pages can be
marked as do not compress. Second, the OS could maintain consis-
tency of the shared PTEs by performing multiple synchronous PTE
updates (with accompanying TLB shootdowns). While the second
solution can potentially lead to better average compressibility, the
first solution (used in our implementation) is simpler and requires
minimal changes inside the OS.

Another situation that can potentially lead to a recursive fault is
the eviction of dirty cache lines from the LLC to DRAM due to
some page overflow handling that leads to another overflow. In or-
der to solve this problem, we assume that the memory controller
has a small dedicated portion of the main memory that is used as

5To fetch a 4KB page, we need to access 64 cache lines (64 bytes
each). In the worst case, this will lead to 64 accesses to main mem-
ory, most of which are likely to be DRAM row-buffer hits. Since a
row-buffer hit takes 7.5ns, the total time to fetch the page is 495ns.
On the other hand, the latency penalty of two context-switches (into
the OS and out of the OS) is around 4us [20]. Overall, a type-1
overflow takes around 4.5us. For a 4.4Ghz or slower processor,
this is less than 20,000 cycles.
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a scratchpad to store cache lines needed to perform page overflow
handling. Dirty cache lines that are evicted from LLC to DRAM
due to OS overflow handling are stored in this buffer space. The
OS is responsible to minimize the memory footprint of the over-
flow handler. Note that this situation is expected to be very rare in
practice, because even a single overflow is infrequent.

4.7 Compression Algorithms
Our LCP-based main memory compression framework can be

employed with any compression algorithm. In this section, we de-
scribe how to adapt a generic compression algorithm to fit the re-
quirements of the LCP framework. Subsequently, we describe how
to adapt the two compression algorithms used in our evaluation.

4.7.1 Adapting a Compression Algorithm to Fit LCP
Every compression scheme is associated with a compression

function, fc, and a decompression function, fd . To compress a
virtual page into the corresponding LCP using the compression
scheme, the memory controller carries out three steps. In the first
step, the controller compresses every cache line in the page using
fc and feeds the sizes of each compressed cache line to the second
step. In the second step, the controller computes the total com-
pressed page size (compressed data + metadata + exceptions, using
the formulas from Section 4.2) for each of a fixed set of target com-
pressed cache line sizes and selects a target compressed cache line
size C ∗ that minimizes the overall LCP size. In the third and final
step, the memory controller classifies any cache line whose com-
pressed size is less than or equal to the target size as compressible
and all other cache lines as incompressible (exceptions). The mem-
ory controller uses this classification to generate the corresponding
LCP based on the organization described in Section 3.1.

To decompress a compressed cache line of the page, the memory
controller reads the fixed-target-sized compressed data and feeds it
to the hardware implementation of function fd .

4.7.2 FPC and BDI Compression Algorithms
Although any compression algorithm can be employed with our

framework using the approach described above, it is desirable to
use compression algorithms that have low complexity hardware
implementation and low decompression latency, so that the over-
all complexity and latency of the design are minimized. For this
reason, we adapt to fit our LCP framework two state-of-the-art
compression algorithms that achieve such design points in the con-
text of compressing in-cache data: (i) Frequent Pattern Compres-
sion [2], and (ii) Base-Delta-Immediate Compression [25].

Frequent Pattern Compression (FPC) is based on the observation
that a majority of the words accessed by applications fall under
a small set of frequently occurring patterns [3]. FPC compresses
each cache line one word at a time. Therefore, the final compressed
size of a cache line is dependent on the individual words within
the cache line. To minimize the time to perform the compression
search procedure described in Section 4.7.1, we limit the search
to four different target cache line sizes: 16B, 21B, 32B and 44B
(similar to the fixed sizes used in [10]).

Base-Delta-Immediate (BDI) Compression is based on the ob-
servation that in most cases, words co-located in memory have
small differences in their values, a property referred to as low dy-
namic range [25]. BDI encodes cache lines with such low dynamic
range using a base value and an array of differences (∆s) of words
within the cache line from either the base value or from zero. The
size of the final compressed cache line depends only on the size of
the base and the size of the ∆s. To employ BDI within our frame-
work, the memory controller attempts to compress a page with dif-

ferent versions of the Base-Delta encoding as described by Pekhi-
menko et al. [25] and then chooses the combination that minimizes
the final compressed page size (according to the search procedure
in Section 4.7.1).

5. LCP OPTIMIZATIONS
In this section, we describe two simple optimizations to our pro-

posed LCP-based framework: (i) memory bandwidth reduction via
compressed cache lines, and (ii) exploiting zero pages and cache
lines for higher bandwidth utilization.

5.1 Enabling Memory Bandwidth Reduction
One potential benefit of main memory compression that has not

been examined in detail by prior work on memory compression is
bandwidth reduction.6 When cache lines are stored in compressed
format in main memory, multiple consecutive compressed cache
lines can be retrieved at the cost of retrieving a single uncom-
pressed cache line. For example, when cache lines of a page are
compressed to 1/4 their original size, four compressed cache lines
can be retrieved at the cost of a single uncompressed cache line ac-
cess. This can significantly reduce the bandwidth requirements of
applications, especially those with good spatial locality. We pro-
pose two mechanisms that exploit this idea.

In the first mechanism, when the memory controller needs to
access a cache line in the compressed data region of LCP, it obtains
the data from multiple consecutive compressed slots (which add
up to the size of an uncompressed cache line). However, some of
the cache lines that are retrieved in this manner may not be valid.
To determine if an additionally-fetched cache line is valid or not,
the memory controller consults the metadata corresponding to the
LCP. If a cache line is not valid, then the corresponding data is not
decompressed. Otherwise, the cache line is decompressed and then
stored in the cache.

The second mechanism is an improvement over the first mech-
anism, where the memory controller additionally predicts if the
additionally-fetched cache lines are useful for the application. For
this purpose, the memory controller uses hints from a multi-stride
prefetcher [14]. In this mechanism, if the stride prefetcher suggests
that an additionally-fetched cache line is part of a useful stream,
then the memory controller stores that cache line in the cache. This
approach has the potential to prevent cache lines that are not use-
ful from polluting the cache. Section 7.5 shows the effect of this
approach on both performance and bandwidth consumption.

Note that prior work [11, 27, 32, 36] assumed that when a cache
line is compressed, only the compressed amount of data can be
transferred over the DRAM bus, thereby freeing the bus for the fu-
ture accesses. Unfortunately, modern DRAM chips are optimized
for full cache block accesses [38], so they would need to be mod-
ified to support such smaller granularity transfers. Our proposal
does not require modifications to DRAM itself or the use of spe-
cialized DRAM such as GDDR3 [16].

5.2 Zero Pages and Zero Cache Lines
Prior work [2, 9, 10, 25, 37] observed that in-memory data con-

tains a significant number of zeros at two granularities: all-zero

6Prior work [11, 27, 32, 36] looked at the possibility of using com-
pression for bandwidth reduction between the memory controller
and DRAM. While significant reduction in bandwidth consumption
is reported, prior work achieve this reduction either at the cost of
increased memory access latency [11, 32, 36], as they have to both
compress and decompress a cache line for every request, or based
on a specialized main memory design [27], e.g., GDDR3 [16].
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CPU Processor 1–4 cores, 4GHz, x86 in-order
CPU L1-D cache 32KB, 64B cache-line, 2-way, 1 cycle
CPU L2 cache 2 MB, 64B cache-line, 16-way, 20 cycles
Main memory 2 GB, 4 Banks, 8 KB row buffers,

1 memory channel, DDR3-1066 [23]
LCP Design Type-1 Overflow Penalty: 20,000 cycles

Table 1: Major Parameters of the Simulated Systems.

pages and all-zero cache lines. Because this pattern is quite com-
mon, we propose two changes to the LCP framework to more ef-
ficiently compress such occurrences of zeros. First, one value of
the page compression encoding (e.g., c-type of 0) is reserved to
indicate that the entire page is zero. When accessing data from a
page with c-type = 0, the processor can avoid any LLC or DRAM
access by simply zeroing out the allocated cache line in the L1-
cache. Second, to compress all-zero cache lines more efficiently,
we can add another bit per cache line to the first part of the LCP
metadata. This bit, which we call the z-bit, indicates if the cor-
responding cache line is zero. Using this approach, the memory
controller does not require any main memory access to retrieve a
cache line with the z-bit set (assuming a metadata cache hit).

6. METHODOLOGY
Our evaluations use an in-house, event-driven 32-bit x86 simu-

lator whose front-end is based on Simics [22]. All configurations
have private L1 caches and shared L2 caches. Major simulation
parameters are provided in Table 1. We use benchmarks from the
SPEC CPU2006 suite [29], four TPC-H/TPC-C queries [33], and
an Apache web server. All results are collected by running a repre-
sentative portion (based on PinPoints [24]) of the benchmarks for
1 billion instructions. We build our energy model based on Mc-
Pat [21], CACTI [31], C-Pack [5], and the Synopsys Design Com-
piler with 65nm library (to evaluate the energy of compression/de-
compression with BDI and address calculation in [10]).

Metrics. We measure the performance of our benchmarks using
IPC (instruction per cycle) and effective compression ratio (effec-
tive DRAM size increase, e.g., a compression ratio of 1.5 for 2GB
DRAM means that the compression scheme achieves the size ben-
efits of a 3GB DRAM). For multi-programmed workloads we use

the weighted speedup [28] performance metric: (∑i
IPCshared

i
IPCalone

i
). For

bandwidth consumption we use BPKI (bytes transferred over bus
per thousand instructions [30]).

Parameters of the Evaluated Schemes. As reported in the re-
spective previous works, we used a decompression latency of 5 cy-
cles for FPC and 1 cycle for BDI.

7. RESULTS
In our experiments for both single-core and multi-core systems,

we compare five different designs that employ different main mem-
ory compression strategies (frameworks) and different compression
algorithms: (i) Baseline system with no compression, (ii) robust
main memory compression (RMC-FPC) [10], (iii) and (iv) LCP
framework with both FPC and BDI compression algorithms (LCP-
FPC and LCP-BDI), and (v) MXT [1]. Note that it is fundamentally
possible to build a RMC-BDI design as well, but we found that it
leads to either low energy efficiency (due to an increase in the BST
metadata table entry size [10] with many more encodings in BDI)
or low compression ratio (when the number of encodings is arti-
ficially decreased). Hence, for brevity, we exclude this potential
design from our experiments.

In addition, we evaluate two hypothetical designs: Zero Page

Name Framework Compression Algorithm
Baseline None None
RMC-FPC RMC [10] FPC [2]
LCP-FPC LCP FPC [2]
LCP-BDI LCP BDI [25]
MXT MXT [1] Lempel-Ziv [40]

ZPC None Zero Page Compression
LZ None Lempel-Ziv [40]

Table 2: List of evaluated designs.

Compression (ZPC) and Lempel-Ziv (LZ)7 to show some practical
upper bounds on main memory compression. Table 2 summarizes
all the designs.

7.1 Effect on DRAM Capacity
Figure 8 compares the compression ratio of all the designs de-

scribed in Table 2. We draw two major conclusions. First, as ex-
pected, MXT, which employs the complex LZ algorithm, has the
highest average compression ratio (2.30) of all practical designs
and performs closely to our idealized LZ implementation (2.60).
At the same time, LCP-BDI provides a reasonably high compres-
sion ratio (1.62 on average), outperforming RMC-FPC (1.59), and
LCP-FPC (1.52). (Note that LCP could be used with both BDI and
FPC algorithms together, and the average compression ratio in this
case is as high as 1.69.)

Second, while the average compression ratio of ZPC is relatively
low (1.29), it greatly improves the effective memory capacity for
a number of applications (e.g., GemsFDTD, zeusmp, and cactus-
ADM). This justifies our design decision of handling zero pages
at the TLB-entry level. We conclude that our LCP framework
achieves the goal of high compression ratio.

7.1.1 Distribution of Compressed Pages
The primary reason why applications have different compression

ratios is the redundancy difference in their data. This leads to the
situation where every application has its own distribution of com-
pressed pages with different sizes (0B, 512B, 1KB, 2KB, 4KB).
Figure 9 shows these distributions for the applications in our study
when using the LCP-BDI design. As we can see, the percentage of
memory pages of every size in fact significantly varies between the
applications, leading to different compression ratios (shown in Fig-
ure 8). For example, cactusADM has a high compression ratio due
to many 0B and 512B pages (there is a significant number of zero
cache lines in its data), while astar and h264ref get most of their
compression with 2KB pages due to cache lines with low dynamic
range [25].

7.1.2 Compression Ratio over Time
To estimate the efficiency of LCP-based compression over time,

we conduct an experiment where we measure the compression ra-
tios of our applications every 100 million instructions (for a to-
tal period of 5 billion instructions). The key observation we make
is that the compression ratio for most of the applications is stable
over time (the difference between the highest and the lowest ratio is
within 10%). Figure 10 shows all notable outliers from this obser-
vation: astar, cactusADM, h264ref, and zeusmp. Even for these ap-
plications, the compression ratio stays relatively constant for a long
7Our implementation of LZ performs compression at 4KB page-
granularity and serves as an idealized upper bound for the in-
memory compression ratio. In contrast, MXT employs Lempel-Ziv
at 1KB granularity.
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Figure 8: Main memory compression ratio.

period of time, although there are some noticeable fluctuations in
compression ratio (e.g., for astar at around 4 billion instructions,
for cactusADM at around 500M instructions). We attribute this
behavior to a phase change within an application that sometimes
leads to changes in the applications’ data. Fortunately, these cases
are infrequent and do not have a noticeable effect on the applica-
tion’s performance (as we describe in Section 7.2). We conclude
that the capacity benefits provided by the LCP-based frameworks
are usually stable over long periods of time.
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Figure 9: Compressed page size distribution with LCP-BDI.
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7.2 Effect on Performance
Main memory compression can improve performance in two ma-

jor ways: (i) reduced memory bandwidth requirements, which can
enable less contention on the main memory bus, an increasingly im-
portant bottleneck in systems, and (ii) reduced memory footprint,
which can reduce long-latency disk accesses. We evaluate the per-
formance improvement due to memory bandwidth reduction (in-
cluding our optimizations for compressing zero values described
in Section 5.2) in Sections 7.2.1 and 7.2.2. We also evaluate the
decrease in page faults in Section 7.2.3.

7.2.1 Single-Core Results
Figure 11 shows the performance of single-core workloads us-

ing three key evaluated designs (RMC-FPC, LCP-FPC, and LCP-
BDI) normalized to the Baseline. Compared against an uncom-
pressed system (Baseline), the LCP-based designs (LCP-BDI and

LCP-FPC) improve performance by 6.1%/5.2% and also outper-
form RMC-FPC.8 We conclude that our LCP framework is effec-
tive in improving performance by compressing main memory.
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Figure 11: Performance comparison (IPC) of different compressed
designs for the single-core system.

Note that LCP-FPC outperforms RMC-FPC (on average) despite
having a slightly lower compression ratio. This is mostly due to the
lower overhead when accessing metadata information (RMC-FPC
needs two memory accesses to different main memory pages in the
case of a BST table miss, while LCP-based framework performs
two accesses to the same main memory page that can be pipelined).
This is especially noticeable in several applications, e.g., astar,
milc, and xalancbmk that have low metadata table (BST) hit rates
(LCP can also degrade performance for these applications). We
conclude that our LCP framework is more effective in improving
performance than RMC [10].

7.2.2 Multi-Core Results
When the system has a single core, the memory bandwidth pres-

sure may not be large enough to take full advantage of the band-
width benefits of main memory compression. However, in a multi-
core system where multiple applications are running concurrently,
savings in bandwidth (reduced number of memory bus transfers)
may significantly increase the overall system performance.

To study this effect, we conducted experiments using 100 ran-
domly generated multiprogrammed mixes of applications (for both
2-core and 4-core workloads). Our results show that the bandwidth
benefits of memory compression are indeed more pronounced for
multi-core workloads. Using our LCP-based design, LCP-BDI, the
average performance improvement (normalized to the performance
of the Baseline system without compression) is 13.9% for 2-core
workloads and 10.7% for 4-core workloads. We summarize our

8Note that in order to provide a fair comparison, we enhanced the
RMC-FPC approach with the same optimizations we did for LCP,
e.g., bandwidth compression. The original RMC-FPC design re-
ported an average degradation in performance [10].
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multi-core performance results in Figure 12a.
We also vary the last-level cache size (1MB – 16MB) for both

single core and multi-core systems across all evaluated workloads.
We find that LCP-based designs outperform the Baseline across all
evaluated systems (average performance improvement for single-
core varies from 5.1% to 13.4%), even when the L2 cache size of
the system is as large as 16MB.
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Figure 12: Performance (with 2 GB DRAM) and number of page
faults (varying DRAM size) using LCP-BDI.

7.2.3 Effect on the Number of Page Faults
Modern systems are usually designed such that concurrently-

running applications have enough main memory to avoid most of
the potential capacity page faults. At the same time, if the appli-
cations’ total working set size exceeds the main memory capacity,
the increased number of page faults can significantly affect perfor-
mance. To study the effect of the LCP-based framework (LCP-
BDI) on the number of page faults, we evaluate twenty randomly
generated 16-core multiprogrammed mixes of applications from
our benchmark set. We also vary the main memory capacity from
256MB to 1GB (larger memories usually lead to almost no page
faults for these workload simulations). Our results (Figure 12b)
show that the LCP-based framework (LCP-BDI) can decrease the
number of page faults by 21% on average (for 1GB DRAM) when
compared with the Baseline design with no compression. We con-
clude that the LCP-based framework can significantly decrease the
number of page faults, and hence improve system performance be-
yond the benefits it provides due to reduced bandwidth.

7.3 Effect on Bus Bandwidth and Memory
Subsystem Energy

When DRAM pages are compressed, the traffic between the LLC
and DRAM can be reduced. This can have two positive effects: (i)
reduction in the average latency of memory accesses, which can
lead to improvement in the overall system performance, and (ii)
decrease in the bus energy consumption due to the decrease in the
number of transfers.

Figure 13 shows the reduction in main memory bandwidth be-
tween LLC and DRAM (in terms of bytes per kilo-instruction, nor-
malized to the Baseline system with no compression) using dif-
ferent compression designs. The key observation we make from
this figure is that there is a strong correlation between bandwidth
compression and performance improvement (Figure 11). Applica-
tions that show a significant reduction in bandwidth consumption
(e.g., GemsFDTD, cactusADM, soplex, zeusmp, leslie3d, and the
four tpc queries) also see large performance improvements. There
are some noticeable exceptions to this observation, e.g., h264ref,
wrf and bzip2. Although the memory bus traffic is compressible in
these applications, main memory bandwidth is not the bottleneck
for their performance.

Figure 14 shows the reduction in memory subsystem energy
of three systems that employ main memory compression—RMC-
FPC, LCP-FPC, and LCP-BDI—normalized to the energy of Base-
line. The memory subsystem energy includes the static and dy-
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Figure 13: Effect of different main memory compression schemes
on memory bandwidth.

namic energy consumed by caches, TLBs, memory transfers, and
DRAM, plus the energy of additional components due to main
memory compression: BST [10], MD cache, address calculation,
compressor/decompressor units. Two observations are in order.
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Figure 14: Effect of different main memory compression schemes
on memory subsystem energy.

First, our LCP-based designs (LCP-BDI and LCP-FPC) improve
the memory subsystem energy by 5.2% / 3.4% on average over the
Baseline design with no compression, and by 11.3% / 9.5% over
the state-of-the-art design (RMC-FPC) based on [10]. This is espe-
cially noticeable for bandwidth-limited applications, e.g., zeusmp
and cactusADM. We conclude that our framework for main mem-
ory compression enables significant energy savings, mostly due to
the decrease in bandwidth consumption.

Second, RMC-FPC consumes significantly more energy than
Baseline (6.1% more energy on average, as high as 21.7% for
dealII). The primary reason for this energy consumption increase is
the physical address calculation that RMC-FPC speculatively per-
forms on every L1 cache miss (to avoid increasing the memory la-
tency due to complex address calculations). The second reason is
the frequent (every L1 miss) accesses to the BST table (described
in Section 2) that holds the address calculation information.

Note that other factors, e.g., compression/decompression energy
overheads or different compression ratios, are not the reasons for
this energy consumption increase. LCP-FPC uses the same com-
pression algorithm as RMC-FPC (and even has a slightly lower
compression ratio), but does not increase energy consumption—
in fact, LCP-FPC improves the energy consumption due to its de-
crease in consumed bandwidth. We conclude that our LCP-based
framework is a more energy-efficient main memory compression
framework than previously proposed designs such as RMC-FPC.

7.4 Analysis of LCP Parameters

7.4.1 Analysis of Page Overflows
As described in Section 4.6, page overflows can stall an applica-

tion for a considerable duration. As we mentioned in that section,
we did not encounter any type-2 overflows (the more severe type) in
our simulations. Figure 15 shows the number of type-1 overflows
per instruction. The y-axis uses a log-scale as the number of over-
flows per instruction is very small. As the figure shows, on average,
less than one type-1 overflow occurs every one million instructions.
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Although such overflows are more frequent for some applications
(e.g., soplex and the three tpch queries), our evaluations show that
this does not degrade performance in spite of adding a 20,000 cycle
penalty for each type-1 page overflow.9 In fact, these applications
gain significant performance from our LCP design. The main rea-
son for this is that the performance benefits of bandwidth reduction
far outweigh the performance degradation due to type-1 overflows.
We conclude that page overflows do not prevent the proposed LCP
framework from providing good overall performance.
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Figure 15: Type-1 page overflows for different applications.

7.4.2 Number of Exceptions
The number of exceptions (uncompressed cache lines) in the

LCP framework is critical for two reasons. First, it determines the
size of the physical page required to store the LCP. The higher the
number of exceptions, the larger the required physical page size.
Second, it can affect an application’s performance as exceptions
require three main memory accesses on an MD cache miss (Sec-
tion 3.2). We studied the average number of exceptions (across
all compressed pages) for each application. Figure 16 shows the
results of these studies.

The number of exceptions varies from as low as 0.02/page for
GemsFDTD to as high as 29.2/page in milc (17.3/page on average).
The average number of exceptions has a visible impact on the com-
pression ratio of applications (Figure 8). An application with a high
compression ratio also has relatively few exceptions per page. Note
that we do not restrict the number of exceptions in an LCP. As long
as an LCP fits into a physical page not larger than the uncompressed
page size (i.e., 4KB in our system), it will be stored in compressed
form irrespective of how large the number of exceptions is. This is
why applications like milc have a large number of exceptions per
page. We note that better performance is potentially achievable by
either statically or dynamically limiting the number of exceptions
per page—a complete evaluation of the design space is a part of our
future work.
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Figure 16: Average number of exceptions per compressed page for
different applications.

7.5 Comparison to Stride Prefetching
Our LCP-based framework improves performance due to its abil-

ity to transfer multiple compressed cache lines using a single mem-
ory request. Because this benefit resembles that of prefetching
9We varied the type-1 overflow latency from 10,000 to 100,000 cy-
cles and found that the impact on performance was negligible as we
varied the latency. Prior work on main memory compression [10]
also used 10,000 to 100,000 cycle range for such overflows.

cache lines into the LLC, we compare our LCP-based design to a
system that employs a stride prefetcher implemented as described
in [14]. Figures 17 and 18 compare the performance and band-
width consumption of three systems: (i) one that employs stride
prefetching, (ii) one that employs LCP-BDI, and (iii) one that em-
ploys LCP-BDI along with hints from a prefetcher to avoid cache
pollution due to bandwidth compression (Section 5.1). Two con-
clusions are in order.

First, our LCP-based designs (second and third bars) are com-
petitive with the more general stride prefetcher for all but a few
applications (e.g., libquantum). The primary reason is that a stride
prefetcher can sometimes increase the memory bandwidth con-
sumption of an application due to inaccurate prefetch requests. On
the other hand, LCP obtains the benefits of prefetching without in-
creasing (in fact, while significantly reducing) memory bandwidth
consumption.

Second, the effect of using prefetcher hints to avoid cache pollu-
tion is not significant. The reason for this is that our systems em-
ploy a large, highly-associative LLC (2MB 16-way) which is less
susceptible to cache pollution. Evicting the LRU lines from such a
cache has little effect on performance, but we did observe the ben-
efits of this mechanism on multi-core systems with shared caches
(up to 5% performance improvement for some two-core workload
mixes—not shown).
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Figure 17: Performance comparison with stride prefetching, and
using prefetcher hints with the LCP-framework.
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Figure 18: Bandwidth comparison with stride prefetching.

8. CONCLUSION
Data compression is a promising technique to increase the ef-

fective main memory capacity without significantly increasing cost
and power consumption. As we described in this paper, the pri-
mary challenge in incorporating compression in main memory is
to devise a mechanism that can efficiently compute the main mem-
ory address of a cache line without significantly adding complexity,
cost, or latency. Prior approaches to addressing this challenge are
either relatively costly or energy inefficient.

In this work, we proposed a new main memory compression
framework, called Linearly Compressed Pages (LCP), to address
this problem. The two key ideas of LCP are to use a fixed size for
compressed cache lines within a page (which simplifies main mem-
ory address computation) and to enable a page to be compressed
even if some cache lines within the page are incompressible (which
enables high compression ratios). We showed that any compression
algorithm can be adapted to fit the requirements of our LCP-based
framework.
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We evaluated the LCP-based framework using two state-of-the-
art compression algorithms (Frequent Pattern Compression and
Base-Delta-Immediate Compression) and showed that it can sig-
nificantly increase effective memory capacity (by 69%) and reduce
page fault rate (by 23%). We showed that storing compressed data
in main memory can also enable the memory controller to reduce
memory bandwidth consumption (by 24%), leading to significant
performance and energy improvements on a wide variety of single-
core and multi-core systems with different cache sizes. Based on
our results, we conclude that the proposed LCP-based framework
provides an effective approach for designing low-complexity and
low-latency compressed main memory.
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