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Abstract
The capacity and cost-per-bit of DRAM have historically

scaled to satisfy the needs of increasingly large and complex
computer systems. However, DRAM latency has remained al-
most constant, making memory latency the performance bottle-
neck in today’s systems. We observe that the high access la-
tency is not intrinsic to DRAM, but a trade-oU made to decrease
cost-per-bit. To mitigate the high area overhead of DRAM sens-
ing structures, commodity DRAMs connect many DRAM cells to
each sense-ampliVer through a wire called a bitline. These bit-
lines have a high parasitic capacitance due to their long length,
and this bitline capacitance is the dominant source of DRAM la-
tency. Specialized low-latency DRAMs use shorter bitlines with
fewer cells, but have a higher cost-per-bit due to greater sense-
ampliVer area overhead. In this work, we introduce Tiered-
Latency DRAM (TL-DRAM), which achieves both low latency
and low cost-per-bit. In TL-DRAM, each long bitline is split into
two shorter segments by an isolation transistor, allowing one
segment to be accessed with the latency of a short-bitline DRAM
without incurring high cost-per-bit. We propose mechanisms
that use the low-latency segment as a hardware-managed or
software-managed cache. Evaluations show that our proposed
mechanisms improve both performance and energy-eXciency
for both single-core and multi-programmed workloads.

1 Introduction

Primarily due to its low cost-per-bit, DRAM has long been
the choice substrate for architecting main memory subsystems.
In fact, DRAM’s cost-per-bit has been decreasing at a rapid
rate as DRAM process technology scales to integrate ever more
DRAM cells into the same die area. As a result, each successive
generation of DRAM has enabled increasingly large-capacity
main memory subsystems at low cost.

In stark contrast to the continued scaling of cost-per-bit, the
latency of DRAM has remained almost constant. During the
same 11-year interval in which DRAM’s cost-per-bit decreased
by a factor of 16, DRAM latency (as measured by the tRCD and
tRC timing constraints1) decreased by only 30.5% and 26.3%, as
shown in Fig 1. From the perspective of the processor, an access
to DRAM takes hundreds of cycles – time during which the
processor may be stalled, waiting for DRAM. Such wasted time
leads to large performance degradations commonly referred to
as the “memory wall” [58] or the “memory gap” [56].

However, the high latency of commodity DRAM chips is
in fact a deliberate trade-oU made by DRAM manufactur-
ers. While process technology scaling has enabled DRAM
designs with both lower cost-per-bit and lower latency [16],
DRAM manufacturers have usually sacriVced the latency ben-
eVts of scaling in order to achieve even lower cost-per-bit, as
we explain below. Hence, while low-latency DRAM chips ex-
ist [25, 27, 45], their higher cost-per-bit relegates them to spe-

1The overall DRAM access latency can be decomposed into individual
DRAM timing constraints (Sec 2.2). Two of the most important timing con-
straints are tRCD (row-to-column delay) and tRC (“row-conWict” latency).
When DRAM is lightly loaded, tRCD is often the bottleneck, whereas when
DRAM is heavily loaded, tRC is often the bottleneck (Secs 2.2 and 2.3).
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† We refer to the dominant DRAM chips during the period of time [5, 19].
Figure 1. DRAM Capacity & Latency Over Time [5, 19, 35, 43]

cialized applications such as high-end networking equipment
that require very low latency even at a very high cost [6].

In DRAM, each bit is represented by electrical charge on a
capacitor-based cell. The small size of this capacitor necessi-
tates the use of an auxiliary structure, called a sense-ampliVer,
to sense the small amount of charge held by the cell and am-
plify it to a full digital logic value. A sense-ampliVer is up to
three orders of magnitude larger than a cell [39]. To mitigate
the large size of sense-ampliVers, each sense-ampliVer is con-
nected to many DRAM cells through a wire called a bitline.

DRAM manufacturers trade latency for cost-per-bit by ad-
justing the length of these bitlines. Shorter bitlines (fewer cells
connected to the bitline) constitute a smaller electrical load on
the bitline, resulting in decreased latency, but require a larger
number of sense-ampliVers for a given DRAM capacity (Fig 2a),
resulting in higher cost-per-bit. Longer bitlines (more cells con-
nected to the bitline) require fewer sense-ampliVers for a given
DRAM capacity (Fig 2b), reducing cost-per-bit, but impose a
higher electrical load on the bitline, increasing latency. As a
result, neither of these two approaches can optimize for both
cost-per-bit and latency.
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Figure 2. DRAM: Latency vs. Cost Optimized, Our Proposal

Our goal is to design a new DRAM architecture that pro-
vides low latency for the common case while still retaining a
low cost-per-bit overall. Our proposal, which we call Tiered-
Latency DRAM, is based on the key observation that long bit-
lines are the dominant source of DRAM latency [47].

Our key idea is to adopt long bitlines to achieve low cost-
per-bit, while allowing their lengths to appear shorter in or-
der to achieve low latency. In our mechanism (Tiered-Latency
DRAM), each long bitline is split into two shorter segments us-
ing an isolation transistor, as shown in Fig 2c: the segment that
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is connected directly to the sense-ampliVer is called the near
segment, whereas the other is called the far segment.

Table 1 summarizes the latency and die-size (i.e., cost-
per-bit2) characteristics of Tiered-Latency DRAM and other
DRAMs (refer to Sec 3 for details). Compared to commodity
DRAM (long bitlines) which incurs high access latency for all
cells, Tiered-Latency DRAM oUers signiVcantly reduced access
latency for cells in the near segment, while not always increas-
ing the access latency for cells in the far segment. In fact, for
cells in the far segment, although tRC is increased, tRCD is
actually decreased.

Table 1. Latency & Die-Size Comparison of DRAMs (Sec 3)

Short Bitline Long Bitline Segmented Bitline
(Fig 2a) (Fig 2b) (Fig 2c)

Unsegmented Unsegmented Near Far

Length (Cells) 32 512 32 480

Latency
tRCD

Lowest High Lowest Low
(8.2ns) (15ns) (8.2ns) (12.1ns)

tRC
Lowest High Lowest Higher
(23.1ns) (52.5ns) (23.1ns) (65.8ns)

Normalized Highest Lowest Low
Die-Size (Cost) (3.76) (1.00) (1.03)

To access a cell in the near segment, the isolation transistor
is turned oU, so that the cell and the sense-ampliVer see3 only
the portion of the bitline corresponding to the near segment
(i.e., reduced electrical load). Therefore, the near segment can
be accessed quickly. On the other hand, to access a cell in the
far segment, the isolation transistor is turned on to connect the
entire length of the bitline to the sense-ampliVer. In this case,
however, the cell and the sense-ampliVer see the full electrical
load of the bitline in addition to the extra load of the isolation
transistor. Due to the increased total load, tRC of the far seg-
ment is indeed higher than that of a long unsegmented bitline
(Table 1). However, counter-intuitively, tRCD of the far seg-
ment is actually lower than that of a long unsegmented bitline
(highlighted in Table 1). As we will explain in Section 4.1, this
is because the isolation transistor’s resistance decouples the two
segments to a certain degree.

We describe two diUerent approaches to exploit the asym-
metric latency characteristics of the near and the far segments.
In the Vrst approach, the near segment capacity is not exposed
to the operating system (OS). Rather, the memory controller
uses the near segment as a hardware-managed cache for the
far segment. We propose three diUerent policies to manage the
near segment cache. The three policies diUer in when a row in
the far segment is cached into the near segment and when it
is evicted from the near segment. In the second approach, the
near segment capacity is exposed to the OS, enabling the OS to
use the full available DRAM capacity. We propose two mech-
anisms, one where the memory controller uses an additional
layer of indirection to map frequently accessed pages to the
near segment, and another where the OS uses static/dynamic
proVling to directly map frequently accessed pages to the near
segment. In both approaches, the accesses to pages that are
mapped to the near segment are served faster and with lower
power than in conventional DRAM, resulting in improved sys-
tem performance and energy eXciency.

2For the same number of bits, we assume that a DRAM chip’s cost-per-bit
is linearly correlated with the die-size.

3In a closed electrical circuit that connects multiple electrical components
to each other, one component is said to “see” (i.e., experience) the eUective
electrical load of another component, and vice versa.

This paper makes the following contributions.

• Based on the observation that long internal wires (bitlines)
are the dominant source of DRAM latency, we propose a
new DRAM architecture, Tiered-Latency DRAM. To our
knowledge, this is the Vrst work that enables low-latency
DRAM without signiVcantly increasing cost-per-bit.

• We quantitatively evaluate the latency, area, and power
characteristics of Tiered-Latency DRAM through circuit
simulations based on a publicly available 55nm DRAM
process technology [39].

• We describe two major ways of leveraging TL-DRAM:
1) by not exposing the near segment capacity to the OS
and using it as a hardware-managed cache, and 2) by ex-
posing the near segment capacity to the OS and using
hardware/software to map frequently accessed pages to
the near segment. We propose two new policies to manage
the near segment cache that speciVcally exploit the asym-
metric latency characteristics of TL-DRAM.

• We evaluate our proposed memory management policies
on top of the Tiered-Latency DRAM substrate and show
that they improve both system performance and energy
eXciency for both single-program and multi-programmed
workloads.

2 DRAM Background
A DRAM chip consists of numerous cells that are grouped

at diUerent granularities to form a hierarchical organization as
shown in Fig 3. First, a DRAM chip is the set of all cells on
the same silicon die, along with the I/O circuitry which allows
the cells to be accessed from outside the chip. Second, a DRAM
chip is divided into multiple banks (e.g., eight for DDR3), where
a bank is a set of cells that share peripheral circuitry such as the
address decoders (row and column). Third, a bank is further
sub-divided into tens of subarrays, where a subarray [24] is a
set of cells that share bitlines and sense-ampliVers.
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Figure 3. DRAM Organization

In this work, we are predominantly concerned with the op-
eration and latency of the bitlines, which are entirely encapsu-
lated at the subarray-level scope. While I/O and peripherals at
the chip-level and bank-level also contribute to the DRAM ac-
cess latency, to a certain extent, this latency is overlapped with
the large latency at the subarray, as we will explain in Sec 2.2.

2.1 Subarray Organization
ADRAM subarray is a two-dimensional array of elementary

units called cells. As shown in Fig 4a, a cell consists of two
components: i) a capacitor that represents binary data in the
form of stored electrical charge and ii) an access-transistor that
is switched on/oU to connect/disconnect the capacitor to a wire
called the bitline. As shown in Fig 4b, there are approximately
512 cells in the vertical direction (a “column” of cells), all of
which share the same bitline. For each bitline, there is a sense-
ampliVer whose main purpose is to read from a cell by reliably
detecting the very small amount of electrical charge stored in
the cell. When writing to a cell, on the other hand, the sense-
ampliVer acts as an electrical driver and programs the cell by
Vlling or depleting its stored charge.
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Figure 4. DRAM Elementary Components

Numerous bitlines (and their associated sense-ampliVers) are
laid side-by-side in parallel to compose a subarray (Fig 3). All
cells in the horizontal direction (a “row” of cells) have their
access-transistors controlled by a shared wire called the word-
line. When the wordline voltage is raised to VDD , all cells of
a row are connected to their respective bitlines and sensed in
lockstep by the sense-ampliVers. This is why the set of all sense-
ampliVers in a subarray is also called a row-buUer. At any given
time, at most one wordline in a subarray is ever raised (i.e., at
most one cell per column is connected to the bitline) – other-
wise, cells in the same column would corrupt each other’s data.

2.2 Three Phases of DRAM Access

As the timelines in Fig 5 show, a DRAM chip access can be
broken down into three distinct phases: i) activation, ii) I/O,
and iii) precharging. Activation and precharging occur entirely
within the subarray, whereas I/O occurs in the peripherals and
I/O circuitry. First, during the activation phase, a wordline
within a subarray is raised, connecting a row of cells to the bit-
lines. Soon thereafter, the data in the row of cells is copied to the
sense-ampliVers of that subarray. Second, during the I/O phase,
the sense-ampliVers transfer the data through the peripherals to
the DRAM chip’s I/O circuitry. From there, the data leaves the
DRAM chip and is sent to the processor over the memory bus.
As Fig 5 shows, the I/O phase’s latency is overlapped with the
latency of the activation phase. Third, during the precharging
phase, the raised wordline in the subarray is lowered, discon-
necting the row of cells from the bitlines. Also, the subarray’s
sense-ampliVers and bitlines are initialized (i.e., cleared of their
data) to prepare for the next access to a new row of cells.

Three DRAM Commands. The DRAM controller (typically
residing on the processor die) issues commands to the DRAM
chip to initiate the three phases listed above. As shown in
Fig 5, there are three commands, one for each phase. In their
respective order, they are: ACTIVATE (ACT), READ/WRITE,
and PRECHARGE (PRE). Among the commands, ACTIVATE
and PRECHARGE are subarray-related commands since they
directly operate on the subarray, whereas READ and WRITE
are I/O-related commands.

Timing Constraints. After the DRAM controller issues
a command to initiate a phase, it must wait for a suXcient
amount of time before issuing the next command. Such re-
strictions imposed between the issuing of commands are called
timing constraints. DRAM timing constraints are visualized in
Fig 5 and summarized in Table 2. Two of the most important
timing constraints are tRCD (row-to-column delay) and tRC

(row-cycle time). Every time a new row of cells is accessed,
the subarray incurs tRCD (15ns; ACTIVATE→READ/WRITE)
to copy the row into the sense-ampliVers. On the other hand,
when there are multiple accesses to diUerent rows in the same
subarray, an earlier access delays all later accesses by tRC

(52.5ns; ACTIVATE→ACTIVATE). This is because the subar-
ray needs time to complete the activation phase (tRAS ) and the

precharging phase (tRP ) for the earlier access, whose sum is
deVned as tRC (= tRAS + tRP ), as shown in Fig 5.

Access Latency. Fig 5 illustrates how the DRAM access la-
tency can be decomposed into individual DRAM timing con-
straints. SpeciVcally, the Vgure shows the latencies of two read
accesses (to diUerent rows in the same subarray) that are served
one after the other. From the perspective of the Vrst access,
DRAM is “unloaded” (i.e., no prior timing constraints are in
eUect), so the DRAM controller immediately issues an ACTI-
VATE on its behalf. After waiting for tRCD , the controller is-
sues a READ, at which point the data leaves the subarray and
incurs additional latencies of tCL (peripherals and I/O circuitry)
and tBL (bus) before it reaches the processor. Therefore, the la-
tency of the Vrst access is 37.5ns (tRCD + tCL + tBL). On the
other hand, the second access is delayed by the timing con-
straint that is in eUect due to the Vrst access (tRC ) and experi-
ences a large “loaded” latency of 90ns (tRC+tRCD+tCL+tBL).

2.3 Subarray Operation: A Detailed Look
Subarray-related timing constraints (tRCD and tRC ) consti-

tute a signiVcant portion of the unloaded and loaded DRAM ac-
cess latencies: 40% of 37.5ns and 75% of 90ns, respectively. Since
tRCD and tRC exist only to safeguard the timely operation
of the underlying subarray, in order to understand why their
values are so large, we must Vrst understand how the subar-
ray operates during the activation and the precharging phases.
(As previously explained, the I/O phase does not occur within
the subarray and its latency is overlapped with the activation
phase.) SpeciVcally, we will show how the bitline plays a cru-
cial role in both activation and precharging, such that it heavily
inWuences both tRCD and tRC (Fig 6).

• Activation (Charge Sharing). Before it is accessed, the cell
is initially in the quiescent state (StateÀ, Fig 6). An access to
the cell begins when its access-transistor is turned on by an
ACTIVATE, connecting its capacitor to the bitline. Slowly,
the charge in the cell capacitor (or the lack thereof) is shared
with the bitline parasitic capacitor, thereby perturbing the
bitline voltage away from its quiescent value (0.5VDD ) in
the positive (or negative) direction (State Á). During charge-
sharing, note that the cell’s charge is modiVed (i.e., data is
lost) because it is shared with the bitline. But this is only
temporary since the cell’s charge is restored as part of the
next step, as described below.

• Activation (Sensing &AmpliVcation). After allowing suX-
cient time for the charge sharing to occur, the sense-ampliVer
is turned on. Immediately, the sense-ampliVer “senses” (i.e.,
observes) the polarity of the perturbation on the bitline volt-
age. Then the sense-ampliVer “ampliVes” the perturbation by
injecting (or withdrawing) charge into (or from) both the cell
capacitor and the bitline parasitic capacitor. After a latency
of tRCD , midway through ampliVcation, enough charge has
been injected (or withdrawn) such that the bitline voltage
reaches a threshold state of 0.75VDD (or 0.25VDD ). At this
point, data is considered to have been “copied” from the cell
to the sense-ampliVer (State Â). In other words, the bitline
voltage is now close enough to VDD (or 0) for the sense-
ampliVer to detect a binary data value of ‘1’ (or ‘0’) and trans-
fer the data to the I/O circuitry, allowing READ and WRITE
commands to be issued. Eventually, the voltage of the bitline
and the cell are fully ampliVed to VDD or 0 (State Ã). Only
at this point is the charge in the cell fully restored to its orig-
inal value. The latency to reach this restored state (State Ã)
is tRAS (which is one component of tRC ).
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Table 2. Timing Constraints (DDR3-1066) [43]

Phase Commands Name Value

1
ACT→ READ

tRCD 15ns
ACT→ WRITE

ACT→ PRE tRAS 37.5ns

2
READ→ data tCL 15ns
WRITE → data tCWL 11.25ns

data burst tBL 7.5ns

3 PRE→ ACT tRP 15ns

1 & 3 ACT→ ACT
tRC

52.5ns
(tRAS+tRP)
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Figure 6. Charge Flow Between the Cell Capacitor (CC ), Bitline Parasitic Capacitor (CB ), and the Sense-AmpliVer (CB ≈ 3.5CC [39])

• Precharging. An access to a cell is terminated by turning
oU its access-transistor by a PRECHARGE. By doing so, the
cell becomes decoupled from the bitline and is not aUected by
any future changes in the bitline voltage. The sense-ampliVer
then withdraws (or injects) charge from the bitline parasitic
capacitor such that the bitline voltage reaches the quiescent
value of 0.5VDD (State Ä). Precharging is required to ensure
that the next accessed cell can perturb the bitline voltage in
either direction (towards VDD or towards 0). This would
not be possible if the bitline is left unprecharged at VDD or
0. The latency to precharge the bitline is tRP (which is the
other component of tRC ).

Summary. Through our discussion, we have established a re-
lationship between the subarray timing constraints (tRCD and
tRC ) and the bitline parasitic capacitance. To summarize, tRCD

and tRC are determined by how quickly the bitline voltage can
be driven – for tRCD , from 0.5VDD to 0.75VDD (threshold); for
tRC , from 0.5VDD to VDD (restored) and back again to 0.5VDD .
In turn, the drivability of the bitline is determined by the bitline
parasitic capacitance, whose value is a function of the bitline
length, as we discuss next.

3 Motivation: Short vs. Long Bitlines

The key parameter in the design of a DRAM subarray is
the number of DRAM cells connected to each bitline (cells-per-
bitline) – i.e., the number of DRAM rows in a subarray. This
number directly aUects the length of the bitline, which in turn
aUects both the access latency and the area of the subarray. As
we describe in this section, the choice of the number of cells-

per-bitline presents a crucial trade-oU between the DRAM ac-
cess latency and the DRAM die-size.

3.1 Latency Impact of Cells-per-Bitline

Every bitline has an associated parasitic capacitance whose
value is proportional to the length of the bitline. This par-
asitic capacitance increases the subarray operation latencies:
i) charge sharing, ii) sensing & ampliVcation, and iii) precharg-
ing, which we discussed in Fig 6.

First, the bitline capacitance determines the bitline voltage
after charge sharing. The larger the bitline capacitance, the
closer its voltage will be to 0.5VDD after charge sharing. Al-
though this does not signiVcantly impact the latency of charge
sharing, this causes the sense-ampliVer to take longer to amplify
the voltage to the Vnal restored value (VDD or 0).

Second, in order to amplify the voltage perturbation on the
bitline, the sense-ampliVer injects (or withdraws) charge into
(or from) both the cell and the bitline. Since the sense-ampliVer
can do so only at a Vxed rate, the aggregate capacitance of
the cell and the bitline determine how fast the bitline volt-
age reaches the threshold and the restored states (States Â and
Ã, Fig 6). A long bitline, which has a large parasitic capaci-
tance, slows down the bitline voltage from reaching these states,
thereby lengthening both tRCD and tRAS , respectively.

Third, to precharge the bitline, the sense-ampliVer drives the
bitline voltage to the quiescent value of 0.5VDD . Again, a long
bitline with a large capacitance is driven more slowly and hence
has a large tRP .



3.2 Die-Size Impact of Cells-per-Bitline
Since each cell on a bitline belongs to a row of cells (span-

ning horizontally across multiple bitlines), the number of cells-
per-bitline in a subarray is equal to the number of rows-per-
subarray. Therefore, for a DRAM chip with a given capacity
(i.e., Vxed total number of rows), one can either have many
subarrays with short bitlines (Fig 2a) or few subarrays with
long bitlines (Fig 2b). However, since each subarray requires
its own set of sense-ampliVers, the size of the DRAM chip in-
creases along with the number of subarrays. As a result, for a
given DRAM capacity, its die-size is inversely proportional to
the number of cells-per-bitline (as a Vrst-order approximation).

3.3 Trade-OU: Latency vs. Die-Size
From the above discussion, it is clear that a short bitline

(fewer cells-per-bitline) has the beneVt of lower subarray la-
tency, but incurs a large die-size overhead due to additional
sense-ampliVers. On the other hand, a long bitline (more cells-
per-bitline), as a result of the large bitline capacitance, in-
curs high subarray latency, but has the beneVt of reduced die-
size overhead. To study this trade-oU quantitatively, we ran
transistor-level circuit simulations based on a publicly avail-
able 55nm DRAM process technology [39]. Fig 7 shows the
results of these simulations. SpeciVcally, the Vgure shows the
latency (tRCD and tRC ) and the die-size for diUerent values of
cells-per-bitline. The Vgure clearly shows the above described
trade-oU between DRAM access latency and DRAM die-size.
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As Fig 7 shows, existing DRAM architectures are either opti-
mized for die-size (commodity DDR3 [43, 30]) and are thus low
cost but high latency, or optimized for latency (RLDRAM [27],
FCRAM [45]) and are thus low latency but high cost. Our goal
is to design a DRAM architecture that achieves the best of both
worlds – i.e., low access latency and low cost.

4 Tiered-Latency DRAM (TL-DRAM)
To obtain both the latency advantages of short bitlines and

the cost advantages of long bitlines, we propose the Tiered-
Latency DRAM (TL-DRAM) architecture, as shown in Fig 8.
The key idea of TL-DRAM is to introduce an isolation tran-
sistor that divides a long bitline into two segments: the near
segment, connected directly to the sense-ampliVer, and the far
segment, connected through the isolation transistor. Unless oth-
erwise stated, throughout the following discussion, we assume,
without loss of generality, that the isolation transistor divides
the bitline such that length of the near and far segments is 128
cells and 384 cells (=512-128), respectively. (Sec 4.1 discusses the
latency sensitivity to the segment lengths.)

Far Segment

Near Segment

Isolation Transistor

Sense-Amps

Figure 8. TL-DRAM: Near vs. Far Segments

4.1 Latency Analysis (Overview)
The primary role of the isolation transistor is to electrically

decouple the two segments from each other. As a result, the ef-
fective bitline length (and also the eUective bitline capacitance)
as seen by the cell and sense-ampliVer is changed. Correspond-
ingly, the latency to access a cell is also changed – albeit dif-
ferently depending on whether the cell is in the near or the far
segment (Table 3), as will be explained next.4

Table 3. Segmented Bitline: EUect on Latency

Near Segment Far Segment
(128 cells) (384 cells)

tRCD
Reduced Reduced

(15ns→ 9.3ns) (15ns→ 13.2ns)

tRC
Reduced Increased

(52.5ns→ 27.8ns) (52.5ns→ 64.1ns)

Near Segment. When accessing a cell in the near segment,
the isolation transistor is turned oU, disconnecting the far seg-
ment (Fig 9a). Since the cell and the sense-ampliVer see only the
reduced bitline capacitance of the shortened near segment, they
can drive the bitline voltage more easily. In other words, for the
same amount of charge that the cell or the sense-ampliVer in-
jects into the bitline, the bitline voltage is higher for the short-
ened near segment compared to a long bitline. As a result, the
bitline voltage reaches the threshold and restored states (Fig 6,
Sec 2.3) more quickly, such that tRCD and tRAS for the near
segment is signiVcantly reduced. Similarly, the bitline can be
precharged to 0.5VDD more quickly, leading to a reduced tRP .
Since tRC is deVned as the sum of tRAS and tRP (Sec 2.2), tRC

is reduced as well.
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Figure 9. Circuit Model of Segmented Bitline

Far Segment. On the other hand, when accessing a cell in
the far segment, the isolation transistor is turned on to con-
nect the entire length of the bitline to the sense-ampliVer. In
this case, however, the isolation transistor acts like a resistor
inserted between the two segments (Fig 9b).

4Note that the latencies shown in Table 3 diUer from those shown in Table 1
due to diUering near segment lengths.
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Figure 10. Latency Analysis
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Figure 11. Activation: Bitline Voltage
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Figure 12. Precharging

When the sense-ampliVer is turned on during activation (as
explained in Sec 2.3), it begins to drive charge onto the bitline.
In commodity DRAM, this charge is spread across the large ca-
pacitance of the entire long bitline. However, in TL-DRAM, the
resistance of the isolation transistor limits how quickly charge
Wows to the far segment, such that the reduced capacitance of
the shortened near segment is charged more quickly than that
of the far segment. This has two key consequences. First, be-
cause the near segment capacitance is charged quickly, the near
segment voltage rises more quickly than the bitline voltage in
commodity DRAM. As a result, the near segment voltage more
quickly reaches 0.75VDD (threshold state, Sec 2.3) and, corre-
spondingly, the sense-ampliVer more quickly detects the binary
data value of ‘1’ that was stored in the far segment cell. That
is why tRCD is lower in TL-DRAM than in commodity DRAM
even for the far segment. Second, because the far segment ca-
pacitance is charged more slowly, it takes longer for the far
segment voltage — and hence the cell voltage — to be restored
to VDD or 0. Since tRAS is the latency to reach the restored
state (Sec 2.3), tRAS is increased for cells in the far segment.
Similarly, during precharging, the far segment voltage reaches
0.5VDD more slowly, for an increased tRP . Since tRAS and
tRP both increase, their sum tRC also increases.

Sensitivity to Segment Length. The lengths of the two seg-
ments are determined by where the isolation transistor is placed
on the bitline. Assuming that the number of cells per bitline is
Vxed at 512 cells, the near segment length can range from as
short as a single cell to as long as 511 cells. Based on our circuit
simulations, Fig 10a and Fig 10b plot the latencies of the near
and far segments as a function of their length, respectively. For
reference, the rightmost bars in each Vgure are the latencies of
an unsegmented long bitline whose length is 512 cells. From
these Vgures, we draw three conclusions. First, the shorter the
near segment, the lower its latencies (tRCD and tRC ). This
is expected since a shorter near segment has a lower eUective
bitline capacitance, allowing it to be driven to target voltages
more quickly. Second, the longer the far segment, the lower the
far segment’s tRCD . Recall from our previous discussion that
the far segment’s tRCD depends on how quickly the near seg-
ment (not the far segment) can be driven. A longer far segment
implies a shorter near segment (lower capacitance), and that is
why tRCD of the far segment decreases. Third, the shorter the
far segment, the smaller its tRC . The far segment’s tRC is de-
termined by how quickly it reaches the full voltage (VDD or
0). Regardless of the length of the far segment, the current that

trickles into it through the isolation transistor does not change
signiVcantly. Therefore, a shorter far segment (lower capaci-
tance) reaches the full voltage more quickly.

4.2 Latency Analysis (Circuit Evaluation)

We model TL-DRAM in detail using SPICE simulations.
Simulation parameters are mostly derived from a publicly avail-
able 55nm DDR3 2Gb process technology Vle [39] which in-
cludes information such as cell and bitline capacitances and
resistances, physical Woorplanning, and transistor dimensions.
Transistor device characteristics were derived from [33] and
scaled to agree with [39].

Fig 11 and Fig 12 show the bitline voltages during activation
and precharging respectively. The x-axis origin (time 0) in the
two Vgures correspond to when the subarray receives the ACTI-
VATE or the PRECHARGE command, respectively. In addition
to the voltages of the segmented bitline (near and far segments),
the Vgures also show the voltages of two unsegmented bitlines
(short and long) for reference.

Activation (Fig 11). First, during an access to a cell in the
near segment (Fig 11a), the far segment is disconnected and is
Woating (hence its voltage is not shown). Due to the reduced
bitline capacitance of the near segment, its voltage increases al-
most as quickly as the voltage of a short bitline (the two curves
are overlapped) during both charge sharing and sensing & am-
pliVcation. Since the near segment voltage reaches 0.75VDD

and VDD (the threshold and restored states) quickly, its tRCD

and tRAS , respectively, are signiVcantly reduced compared to
a long bitline. Second, during an access to a cell in the far
segment (Fig 11b), we can indeed verify that the voltages of
the near and the far segments increase at diUerent rates due
to the resistance of the isolation transistor, as previously ex-
plained. Compared to a long bitline, while the near segment
voltage reaches 0.75VDD more quickly, the far segment voltage
reaches VDD more slowly. As a result, tRCD of the far segment
is reduced while its tRAS is increased.

Precharging (Fig 12). While precharging the bitline after
accessing a cell in the near segment (Fig 12a), the near segment
reaches 0.5VDD quickly due to the smaller capacitance, almost
as quickly as the short bitline (the two curves are overlapped).
On the other hand, precharging the bitline after accessing a cell
in the far segment (Fig 12b) takes longer compared to the long
bitline baseline. As a result, tRP is reduced for the near segment
and increased for the far segment.



4.3 Die-Size Analysis
Adding an isolation transistor to the bitline increases only

the height of the subarray and not the width (Fig 8). Without
the isolation transistor, the height of a baseline subarray is equal
to the sum of height of the cells and the sense-ampliVer. In
the following analysis, we use values from the Rambus power
model [39].5 The sense ampliVer and the isolation transistor
are respectively 115.2x and 11.5x taller than an individual cell.
For a subarray with 512 cells, the overhead of adding a single
isolation transistor is 11.5

115.2+512 = 1.83%.
Until now we have assumed that all cells of a DRAM row are

connected to the same row of sense-ampliVers. However, the
sense-ampliVers are twice as wide as an individual cell. There-
fore, in practice, only every other bitline (cell) is connected to
a bottom row of sense-ampliVers. The remaining bitlines are
connected to the another row of sense-ampliVers of the verti-
cally adjacent (top) subarray. This allows for tighter packing of
DRAM cells within a subarray. As a result, each subarray re-
quires two sets of isolation transistors. Therefore, the increase
in subarray area due to the two isolation transistors is 3.66%.
Once we include the area of the peripheral and I/O circuitry
which does not change due to the addition of the isolation tran-
sistors, the resulting DRAM die-size area overhead is 3.15%.

4.4 Enabling Inter-Segment Data Transfer
One way of exploiting TL-DRAM’s asymmetric latencies is

to use the near segment as a cache to the far segment. Com-
pared to the far segment, the near segment is smaller and faster.
Therefore, frequently-used or latency-critical data can beneVt
signiVcantly from being placed in the near segment as opposed
to the far segment. The problem lies in enabling an eXcient
way of transferring (copying or migrating) data between the
two segments. Unfortunately, in existing DRAM chips, even
to transfer data from one row to another row within the same
subarray, the data must be read out externally to the DRAM
controller and then written back to the chip. This wastes sig-
niVcant amounts of power and bandwidth on the memory bus
(that connects the DRAM chip to the DRAM controller) and
incurs large latency.

In TL-DRAM, data transfer between the two segments oc-
curs entirely within DRAM without involving the external
memory bus. TL-DRAM leverages the fact that the bitline it-
self is essentially a bus that connects to all cells in both the near
and far segments. As an example, let us assume that we are
accessing a cell in the far segment (transfer source). When the
bitline has reached the restored state (Sec 2.3), the data in the
cell is fully copied onto the bitline. Normally, at this point, the
DRAM controller would issue a PRECHARGE to clear the bit-
line voltage to 0.5VDD . Instead, TL-DRAM allows the DRAM
controller to issue another ACTIVATE, this time to a cell in the
near segment (transfer destination). Since the bitline is at a full
voltage, the bitline drives the near segment cell so that data is
copied into it. According to our simulations, writing into the
destination cell takes about 4ns. In fact, the destination cell
can be connected to the bitline even before the source cell has
reached the restored state, thereby overlapping the copying la-
tency with the tRAS latency. More generally, the source and the
destination can be any two cells connected to the same bitline,
regardless of which segment they lie on.

5 Leveraging the TL-DRAM Substrate
One simple way of leveraging the TL-DRAM substrate is to

use the near segment as a hardware-managed cache for the far

5We expect the values to be of similar orders of magnitude for other designs.

segment. In this approach, the memory controller does not ex-
pose the near segment capacity to the operating system (OS).
While this approach reduces the overall available memory ca-
pacity, it keeps both the hardware and the software design sim-
ple. Another alternative approach is to expose the near segment
capacity to the OS. As we will describe in Section 5.2, eUec-
tively exploiting the TL-DRAM substrate using this alternate
approach may slightly increase the complexity of the hardware
or the software. We now describe our diUerent mechanisms to
leverage the TL-DRAM substrate.

5.1 Near Segment as an OS-Transparent Hardware-
Managed Cache

We describe three diUerent mechanisms that use the near
segment as a hardware-managed cache to the far segment. In
all three mechanisms, the memory controller tracks the rows in
the far segment that are cached in the near segment (for each
subarray). The three mechanisms diUer in 1) when they cache
a far-segment row in the near segment, and 2) when they evict
a row from the near segment.

Mechanism 1: Simple Caching (SC). Our Vrst mechanism,
Simple Caching (SC), utilizes the near segment as an LRU cache
to the far segment. Under this mechanism, the DRAM con-
troller categorizes a DRAM access into one of three cases:
i) sense-ampliVer hit: the corresponding row is already acti-
vated; ii) near segment hit: the row is already cached in the
near segment; and iii) near segment miss: the row is not cached
in the near segment. In the Vrst case, sense-ampliVer hit (alter-
natively, row-buUer hit), the access is served directly from the
row-buUer. Meanwhile, the LRU-ordering of the rows cached in
the near segment remains unaUected. In the second case, near
segment hit, the DRAM controller quickly activates the row in
the near segment, while also updating it as the MRU row. In
the third case, near segment miss, the DRAM controller checks
whether the LRU row (eviction candidate) in the near segment
is dirty. If so, the LRU row must Vrst be copied (or written back)
to the far segment using the transfer mechanism described in
Section 4.4. Otherwise, the DRAM controller directly activates
the far segment row (that needs to be accessed) and copies (or
caches) it into the near segment and updates it as the MRU row.

Mechanism 2: Wait-Minimized Caching (WMC). When
two accesses to two diUerent rows of a subarray arrive almost
simultaneously, the Vrst access delays the second access by a
large amount, tRC . Since the Vrst access causes the second ac-
cess to wait for a long time, we refer to the Vrst access as a wait-
inducing access. Assuming both rows are in the far segment,
the latency at the subarray experienced by the second access is
tRCfar + tRCDfar (77.3ns). Such a large latency is mostly due
to the wait caused by the Vrst access, tRCfar (64.1ns). Hence, it
is important for the second access that the wait is minimized,
which can be achieved by caching the Vrst accessed data in the
near segment. By doing so, the wait is signiVcantly reduced
from tRCfar (64.1ns) to tRCnear (27.8ns). In contrast, caching
the second row is not as useful, since it yields only a small la-
tency reduction from tRCDfar (13.2ns) to tRCDnear (9.3ns).

Our second mechanism, Wait-Minimized Caching (WMC),
caches only wait-inducing rows. These are rows that, while
they are accessed, cause a large wait (tRCfar ) for the next access
to a diUerent row. More speciVcally, a row in the far segment
is classiVed as wait-inducing if the next access to a diUerent
row arrives while the row is still being activated. WMC oper-
ates similarly to our SC mechanism except for the following
diUerences. First, WMC copies a row from the far segment
to the near segment only if the row is wait-inducing. Sec-
ond, instead of evicting the LRU row from the near segment,
WMC evicts the least-recently wait-inducing row. Third, when



a row is accessed from the near segment, it is updated as the
most-recently wait-inducing row only if the access would have
caused the next access to wait had the row been in the far seg-
ment. The memory controller is augmented with appropriate
structures to keep track of the necessary information to identify
wait-inducing rows (details omitted due to space constraints).

Mechanism 3: BeneVt-Based Caching (BBC). Accessing a
row in the near segment provides two beneVts compared to ac-
cessing a row in the far segment: 1) reduced tRCD (faster ac-
cess) and 2) reduced tRC (lower wait time for the subsequent
access). Simple Caching (SC) and Wait-Minimized Caching
(WMC) take into account only one of the two beneVts. Our
third mechanism, BeneVt-Based Caching (BBC) explicitly takes
into account both beneVts of caching a row in the near segment.
More speciVcally, the memory controller keeps track of a beneVt
value for each row in the near segment. When a near segment
row is accessed, its beneVt is incremented by the number of
DRAM cycles saved due to reduced access latency and reduced
wait time for the subsequent access. When a far-segment row
is accessed, it is immediately promoted to the near segment, re-
placing the near-segment row with the least beneVt. To prevent
beneVt values from becoming stale, on every eviction, the bene-
Vt for every row is halved. (Implementation details are omitted
due to space constraints.)

5.2 Exposing Near Segment Capacity to the OS
Our second approach to leverage the TL-DRAM substrate

is to expose the near segment capacity to the operating sys-
tem. Note that simply replacing the conventional DRAM with
our proposed TL-DRAM can potentially improve system per-
formance due to the reduced tRCDnear , tRCDfar , and tRCnear ,
while not reducing the available memory capacity. Although
this mechanism incurs no additional complexity at the memory
controller or the operating system, we Vnd that the overall per-
formance improvement due to this mechanism is low. To better
exploit the beneVts of the low access latency of the near seg-
ment, frequently accessed pages should be mapped to the near
segment. This can be done by the hardware or by the OS. To
this end, we describe two diUerent mechanisms.

Exclusive Cache. In this mechanism, we use the near seg-
ment as an exclusive cache to the rows in the far segment. The
memory controller uses one of the three mechanisms proposed
in Section 5.1 to determine caching and eviction candidates. To
cache a particular row, the data of that row is swapped with
the data of the row to be evicted from the near segment. For
this purpose, each subarray requires a dummy-row (D-row).
To swap the data of the to-be-cached row (C-row) and to-be-
evicted row (E-row), the memory controller simply performs
the following three migrations:

C-row→ D-row E-row→ C-row D-row→ E-row
The exclusive cache mechanism provides almost full main

memory capacity (except one dummy row per subarray,< 0.2%
loss in capacity) at the expense of two overheads. First, since
row swapping changes the mappings of rows in both the near
and the far segment, the memory controller must maintain the
mapping of rows in both segments. Second, each swapping re-
quires three migrations, which increases the latency of caching.

ProVle-Based Page Mapping. In this mechanism, the OS
controls the virtual-to-physical mapping to map frequently ac-
cessed pages to the near segment. The OS needs to be in-
formed of the bits in the physical address that control the near-
segment/far-segment mapping. Information about frequently
accessed pages can either be obtained statically using compiler-
based proVling, or dynamically using hardware-based proVl-
ing. In our evaluations, we show the potential performance im-
provement due to this mechanism using hardware-based pro-

Vling. Compared to the exclusive caching mechanism, this ap-
proach requires much lower hardware storage overhead.

6 Implementation Details & Further Analysis
6.1 Near Segment Row Decoder Wiring

To avoid the need for a large, monolithic row address de-
coder at each subarray, DRAM makes use of predecoding. Out-
side the subarray, the row address is divided intoM sets of bits.
Each set,N bits, is decoded into 2N wires, referred to asN : 2N

predecoding.6 The input to each row’s wordline driver is then
simply the logical AND of the M wires that correspond to the
row’s address. This allows the per-subarray row decoding logic
to be simple and compact, at the cost of increasing the wiring
overhead associated with row decoding at each subarray. As a
result, wiring overhead dominates the cost of row decoding.

The inter-segment data transfer mechanism described in
Sec 4.4 requires up to two rows to be activated in the same sub-
array at once, necessitating a second row decoder. However,
since one of the two activated rows is always in the near seg-
ment, this second row decoder only needs to address rows in the
near segment. For a near segment with 32 rows, a scheme that
splits the 5 (log2 32) near segment address bits into 3-bit and
2-bit sets requires 12 additional wires to be routed to each sub-
array (3:8 predecoding + 2:4 predecoding). The corresponding
die-size penalty is 0.33%, calculated based on the total die-size
and wire-pitch derived from Vogelsang [39, 54].

6.2 Additional Storage in DRAM Controller
The memory controller requires additional storage to keep

track of the rows that are cached in the near segment. In the
inclusive caching mechanisms, each subarray contains a near
segment of length N , serving as an N -way (fully-associative)
cache of the far segment of length F . Therefore, each near-
segment row requires a dlog2 F e-bit tag. Hence, each subarray
requires Ndlog2 F e bits for tag storage, and a system with S
subarrays requires SNdlog2 F e bits for tags. In the exclusive
caching mechanism, row swapping can lead to any physical
page within a subarray getting mapped to any row within the
subarray. Hence, each row within the subarray requires the tag
of the physical page whose data is stored in that row. Thus,
each row in a subarray requires a dlog2(N + F )e-bit tag, and
a system with S subarrays requires S(N + F )dlog2(N + F )e
bits for tags. In the system conVguration we evaluate (described
in Sec 7), (N,F, S) = (32, 480, 256), the tag storage overhead
is 9 KB for inclusive caching and 144 KB for exclusive caching.

SC and WMC additionally require log2 N bits per near seg-
ment row for replacement information (SN log2 N bits total),
while our implementation of BBC uses an 8-bit beneVt Veld per
near segment row (8SN bits total). For our evaluated system,
these are overheads of 5 KB and 8 KB respectively.

6.3 Power Analysis
The non-I/O power consumption of the DRAM device can

be broken into three dominant components: i) raising and low-
ering the wordline during ACTIVATE and PRECHARGE, ii)
driving the bitline during ACTIVATE, and iii) transferring data
from the sense-ampliVers to the peripherals. The Vrst two of
these components diUer between a conventional DRAM and
TL-DRAM, for two reasons:

Reduced Power Due to Reduced Bitline Capacitance in
Near Segment. The energy required to restore a bitline is pro-
portional to the bitline’s capacitance. In TL-DRAM, the near
segment has a lower capacitance than that of a conventional
DRAM’s bitline, resulting in decreased power consumption.

6N may diUer between sets.



Additional Power Due to Isolation Transistors. The addi-
tional power required to control the isolation transistors when
accessing the far segment is approximately twice that of raising
the wordline, since raising the wordline requires driving one
access transistor per bitline, while accessing the far segment re-
quires driving two isolation transistors per bitline (Sec 4.3).

Using DRAM power models from Rambus and Micron [29,
39, 54], we estimate power consumption of TL-DRAM and con-
ventional DRAM in Figure 13. Note that, while the near seg-
ment’s power consumption increases with the near segment
length, the far segment’s power does not change as long as the
total bitline length is constant. Our evaluations in Sec 8 take
these diUerences in power consumption into account.
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(b) Power Consumption for PRECHARGE
† Ref.: Long Bitline, F: Far Segment, I: Inter-Segment Data Transfer

Figure 13. Power Consumption Analysis

6.4 More Tiers
Although we have described TL-DRAM with two segments

per subarray, one can imagine adding more isolation transistors
to divide a subarray into more tiers, each tier with its own la-
tency and power consumption characteristics. As a case study,
we evaluated the latency characteristics of TL-DRAM with
three tiers per subarray (near/middle/far with 32/224/256 cells).
The normalized tRCD and tRC of the near/middle/far segments
are 54.8%/70.7%/104.1% and 44.0%/77.8%/156.9%. While adding
more tiers can enable more Vne-grained caching and partition-
ing mechanisms, they come with the additional area cost of
3.15% per additional tier, additional power consumption to con-
trol the multiple isolation transistors, and logic complexity in
DRAM and the DRAM controller.

7 Evaluation Methodology
Simulators. We developed a cycle-accurate DDR3-SDRAM

simulator that we validated against Micron’s Verilog behavioral
model [28] and DRAMSim2 [42]. We use this memory simula-
tor as part of a cycle-level in-house x86 multi-core simulator,
whose front-end is based on Pin [26].

System ConVguration. The evaluated system is conVgured
as shown in Table 4. Unless otherwise stated, the evaluated
TL-DRAM has a near segment size of 32 rows.

Parameters. DRAM latency is as calculated in Sec 4.2.
DRAM dynamic energy consumption is evaluated by associat-
ing an energy cost with each DRAM command, derived using
the tools [29, 39, 54] and the methodology given in Sec 6.3.

Benchmarks. We use 32 benchmarks from SPEC CPU2006,
TPC [52], STREAM [1] and a random microbenchmark similar
in behavior to GUPS [14]. We classify benchmarks whose per-
formance is signiVcantly aUected by near segment size as sensi-

Table 4. Evaluated System ConVguration

Processor 5.3 GHz, 3-wide issue, 8 MSHRs/core,
128-entry instruction window

Last-Level 64B cache line, 16-way associative,
Cache 512kB private cache slice/core

Memory 64/64-entry read/write request queue,
Controller row-interleaved mapping, closed-page policy,

FR-FCFS scheduling [41]

DRAM 2GB DDR3-1066,
1/2/4 channel (@1-core/2-core/4-core), 1 rank/channel,
8 banks/rank, 32 subarrays/bank, 512 rows/bitline
tRCD (unsegmented): 15.0ns, tRC (unsegmented): 52.5ns

TL-DRAM 32 rows/near segment, 480 rows/far segment
tRCD (near/far): 8.2/12.1ns, tRC (near/far): 23.1/65.8ns

tive, and all other benchmarks as non-sensitive. For single-core
sensitivity studies, we report results that are averaged across all
32 benchmarks. We also present multi-programmed multi-core
evaluations in Sec 8.4. For each multi-core workload group, we
report results averaged across 16 workloads, generated by ran-
domly selecting from speciVc benchmark groups (sensitive or
non-sensitive).

Simulation and Evaluation. We simulate each benchmark
for 100 million instructions. For multi-core evaluations, we
ensure that even the slowest core executes 100 million in-
structions, while other cores continue to exert pressure on the
memory subsystem. To measure performance, we use instruc-
tion throughput (IPC) for single-core systems and weighted
speedup [49] for multi-core systems.

8 Results
8.1 Single-Core Results: Inclusive Cache

Fig 14 compares our proposed TL-DRAM based mechanisms
(SC, WMC, and BBC) to the baseline with conventional DRAM.
For each benchmark, the Vgure plots four metrics: i) perfor-
mance improvement of the TL-DRAM based mechanisms com-
pared to the baseline, ii) the number of misses per instruction in
the last-level cache, iii) the fraction of accesses that are served
at the row buUer, near segment and the far segment using each
of the three proposed mechanisms, and iv) the power consump-
tion of the TL-DRAM based mechanisms relative to the base-
line. We draw three conclusions from the Vgure.

First, for most benchmarks, all of our proposed mechanisms
improve performance signiVcantly compared to the baseline.
On average, SC, WMC and BBC improve performance by 12.3%,
11.3% and 12.8%, respectively, compared to the baseline. As ex-
pected, performance beneVts are highest for benchmarks with
high memory intensity (MPKI: Last-Level Cache Misses-Per-
Kilo-Instruction) and high near-segment hit rate.

Second, all three of our proposed mechanisms perform sim-
ilarly for most benchmarks. However, there are a few bench-
marks where WMC signiVcantly degrades performance com-
pared to SC. This is because WMC only caches wait-inducing
rows, ignoring rows with high reuse that cause few conWicts.
BBC, which takes both reuse and wait into account, outper-
forms both SC and WMC. For example, BBC signiVcantly im-
proves performance compared to SC (> 8% for omnetpp, > 5%
for xalancbmk) by reducing wait and compared to WMC (> 9%
for omnetpp, > 2% for xalancbmk) by providing more reuse.

Third, BBC degrades performance only for the microbench-
mark random. This benchmark has high memory intensity
(MPKI = 40) and very low reuse (near-segment hit rate< 10%).
These two factors together result in frequent bank conWicts in
the far segment. As a result, most requests experience the full
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Figure 14. Single-core: IPC improvement, LLC MPKI, Fraction of accesses serviced at row buUer/near segment/far segment, Power
consumption

penalty of the far segment’s longer tRC . We analyze this mi-
crobenchmark in detail in Sec 8.2.

Power Analysis. As described in Sec 6.3, power con-
sumption is signiVcantly lower for near-segment accesses, but
higher for far-segment accesses, compared to accesses in a con-
ventional DRAM. As a result, TL-DRAM achieves signiVcant
power savings when most accesses are to the near segment. The
bottom-most plot of Fig 14 compares the power consumption of
our TL-DRAM-based mechanisms to that of the baseline. Our
mechanisms produce signiVcant power savings (23.6% for BBC
vs. baseline) on average, since over 90% of accesses hit in the
row buUer or near segment for most benchmarks.

8.2 EUect of Far Segment Latency: Inclusive Cache

As we describe in Sec 4.1, the tRCD of the far segment is
lower than the tRCD of conventional DRAM. Therefore, even
if most of the accesses are to the far segment, if the accesses
are suXciently far apart such that tRC is not a bottleneck,
TL-DRAM can still improve performance. We study this ef-
fect using our random microbenchmark, which has very little
data reuse and hence usually accesses the far segment. Fig 15
shows the performance improvement of our proposed mecha-
nisms compared to the baseline with varying memory intensity
(MPKI) of random. As the Vgure shows, when the memory in-
tensity is low (< 2), the reduced tRCD of the far segment dom-
inates, and our mechanisms improve performance by up to 5%.
However, further increasing the intensity of randommakes tRC

the main bottleneck as evidenced by the degraded performance
due to our proposed mechanisms.
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Figure 15. TL-DRAM Performance on Benchmark random

8.3 Sensitivity Results: Inclusive Cache
Sensitivity to Near Segment Capacity. The number of

rows in each near segment presents a trade-oU, as increasing
the near segment’s size increases its capacity but also increases
its access latency. Fig 16 shows the average performance im-
provement of our proposed mechanisms over the baseline as
we vary the near segment size. As expected, performance ini-
tially improves as the number of rows in the near segment is
increased due to increased near segment capacity. However,
increasing the number of rows per near segment beyond 32 re-
duces the performance beneVts due to the increased near seg-
ment access latency.
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 Figure 16. Varying Near Segment Capacity (Inclusive Cache)

Sensitivity to Channel Count. For 1-core systems with 1,
2 and 4 memory channels, TL-DRAM provides 12.8%, 13.8%
and 14.2% performance improvement compared to the baseline.
The performance improvement of TL-DRAM increases with in-
creasing number of channels. This is because, with more chan-
nels, the negative impact of channel conWicts reduces and bank
access latency becomes the primary bottleneck. Therefore, TL-
DRAM, which reduces the average bank access latency, pro-
vides better performance with more channels.

8.4 Multi-Core Results: Inclusive Cache
Fig 17 shows the system performance improvement of our

proposed mechanisms compared to baseline for three diUerent
workload categories. As expected, when both benchmarks are
sensitive to near segment capacity (Fig 17a), the improvement
in weighted speedup increases with increasing near segment
capacity; when neither benchmark is sensitive to the near seg-
ment capacity, the weighted speedup improvement decreases
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Figure 17. System Performance: 2-core, Inclusive Cache
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Figure 18. Inclusive Cache Analysis (BBC)
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Figure 19. Exclusive Cache Analysis (WMC)
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Figure 20. ProVle-Based Page Mapping

with increasing near segment capacity due to the increased near
segment access latency (Fig 17c). For almost all workload cat-
egories and near segment capacities, BBC performs compara-
bly to or signiVcantly better than SC, emphasizing the advan-
tages of our beneVt-based near segment management policy. As
shown in Fig 18, on average, BBC improves weighted speedup
by 12.3% and reduces power consumption by 26.4% compared
to the baseline. We observe similar trends on 4-core systems,
where BBC improves weighted speedup by 11.0% and reduces
power consumption by 28.6% on average.

8.5 Exclusive Cache
Fig 19 shows the performance improvement of the TL-

DRAM with the exclusive caching mechanism (Section 5.2)
and 32 rows in the near segment over the baseline. For 1-/2-
/4-core systems, TL-DRAM with exclusive caching improves
performance by 7.9%/8.2%/9.9% and reduces power consump-
tion by 9.4%/11.8%/14.3%. The performance improvement due
to exclusive caching is lower compared to that of inclusive
caching due to the increased caching latency, as explained in
Section 5.2. Unlike inclusive caching, where BBC outperforms
SC and WMC, WMC performs the best for exclusive caching.
This is because unlike BBC and SC that cache any row that is
accessed in the far segment, WMC caches a row only if it is
wait-inducing. As a result, WMC reduces bank unavailability
due to the increased caching latency.

8.6 ProVle-Based Page Mapping
Fig 20 shows the performance improvement of TL-DRAM

with proVle-based page mapping over the baseline. The
evaluated memory subsystem has 64 rows in the near seg-
ment. Therefore, the top 64 most frequently accessed rows
in each subarray, as determined by a proVling run, are al-
located in the near segment. For 1-/2-/4-core systems, TL-
DRAM with proVle-based page mapping improves perfor-
mance by 8.9%/11.6%/7.2% and reduces power consumption by
19.2%/24.8%/21.4%. These results indicate a signiVcant poten-
tial for such a proVling based mapping mechanism. We leave
a more rigorous evaluation of such a proVling based mapping
mechanism to future work.

9 Related Work
Short Bitlines. Some specialized DRAMs reduce access la-

tency by reducing the number of cells-per-bitline, e.g. Micron’s
RLDRAM [27] and Fujitsu’s FCRAM [45]. However, as dis-
cussed in Secs 1 and 3, this requires the addition of more sense-
ampliVers, incurring an area overhead of 30–80% [21, 45]. This
results in signiVcantly higher cost-per-bit.

Cached DRAM. Cached DRAM [10, 12, 13, 15, 20, 34, 44, 57,
59] adds an SRAM cache to DRAM chips. However, SRAM-

cached DRAM approaches have two major limitations. First,
an SRAM cache incurs signiVcant area overhead; using CACTI-
D [51], we estimate that an SRAM-cached DRAM with equiva-
lent capacity to a TL-DRAM with 32 rows/near segment would
incur 145.3% area overhead. Second, transferring data between
the DRAM array and the SRAM cache requires use of the rel-
atively narrow global I/O bus within the DRAM chip leading
to high caching latency. In contrast, TL-DRAM incurs min-
imal area overhead of 3.15% (Sec 4.3) and facilitates fast in-
DRAM transfer of data between segments (Sec 4.4). With the
same amount of cache capacity, the performance improvement
of Cached DRAM (8.3%) is less compared to that of TL-DRAM
(12.8%) for 1-core systems. This is primarily due to the large
caching latency incurred by Cached DRAM.

Increased DRAM Parallelism. Kim et al. [24] propose
schemes to parallelize accesses to diUerent subarrays within a
bank, thereby overlapping their latencies. Multiple works [2,
55, 60] have proposed partitioning a DRAM rank into multiple
independent rank subsets that can be accessed in parallel [3].
All of these proposals reduce the frequency of row-buUer con-
Wicts, but not their latency, and can be applied in conjunction
with our TL-DRAM substrate.

DRAMController Optimizations. Sudan et al. [50] propose
a mechanism to co-locate heavily reused data in the same row,
with the goal of improving row-buUer locality. A large body of
prior work has explored DRAM access scheduling in the con-
troller (e.g. [4, 9, 23, 22, 32, 31]), to mitigate inter-application
interference and queueing latencies in multi-core systems. Our
TL-DRAM substrate is orthogonal to all of these approaches.

Segmented Bitlines in Other Technologies. Prior
works [11, 40, 48] have proposed the use of segmented bit-
lines in other memory technologies, like SRAM caches and Wash
memory. In contrast, this is, to our knowledge, the Vrst work to
propose the use of segmented bitlines in DRAM. Our approach
and the resulting tradeoUs are diUerent as we take into account
characteristics and operation that are unique to DRAM, such
as DRAM-speciVc subarray organization, sensing mechanisms,
and timing constraints.

Caching and Paging Techniques. We leverage our TL-
DRAM substrate to cache data in the near segment. Many
previous works (e.g., [8, 17, 18, 36, 37, 38, 46]) have proposed
sophisticated cache management policies in the context of pro-
cessor SRAM caches. These techniques are potentially applica-
ble to TL-DRAM to manage which rows get cached in the near
segment. The TL-DRAM substrate also allows the operating
system to exploit the asymmetric latencies of the near and far
segments in software through intelligent page placement and
migration techniques [53, 7]. We leave the investigation of such
caching and paging techniques on TL-DRAM to future work.



10 Conclusion
Existing DRAM architectures present a trade-oU between

cost-per-bit and access latency. One can either achieve low
cost-per-bit using long bitlines or low access latency using short
bitlines, but not both. We introduced Tiered-Latency DRAM
(TL-DRAM), a DRAM architecture that provides both low la-
tency (in the common case) and low cost-per-bit. The key idea
behind TL-DRAM is to segment a long bitline using an isolation
transistor, creating a segment of rows with low access latency
while keeping cost-per-bit on par with commodity DRAM.

We presented mechanisms that take advantage of our
TL-DRAM substrate by using its low-latency segment as a
hardware-managed cache. Our most sophisticated cache man-
agement algorithm, BeneVt-Based Caching (BBC), selects rows
to cache that maximize access latency savings. We show that
our proposed techniques signiVcantly improve both system per-
formance and energy eXciency across a variety of systems and
workloads. We conclude that TL-DRAM provides a promising
low-latency and low-cost substrate for building main memo-
ries, on top of which existing and new caching and page allo-
cation mechanisms can be implemented to provide even higher
performance and higher energy eXciency.
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