
ATLAS: A Scalable and High-Performance Scheduling Algorithm

for Multiple Memory Controllers

Yoongu Kim Dongsu Han Onur Mutlu Mor Harchol-Balter

Carnegie Mellon University

Abstract

Modern chip multiprocessor (CMP) systems employ multiple

memory controllers to control access to main memory. The schedul-

ing algorithm employed by these memory controllers has a signifi-

cant effect on system throughput, so choosing an efficient scheduling

algorithm is important. The scheduling algorithm also needs to be

scalable – as the number of cores increases, the number of memory

controllers shared by the cores should also increase to provide suf-

ficient bandwidth to feed the cores. Unfortunately, previous memory

scheduling algorithms are inefficient with respect to system through-

put and/or are designed for a single memory controller and do not

scale well to multiple memory controllers, requiring significant fine-

grained coordination among controllers.

This paper proposes ATLAS (Adaptive per-Thread Least-

Attained-Service memory scheduling), a fundamentally new mem-

ory scheduling technique that improves system throughput without

requiring significant coordination among memory controllers. The

key idea is to periodically order threads based on the service they

have attained from the memory controllers so far, and prioritize those

threads that have attained the least service over others in each pe-

riod. The idea of favoring threads with least-attained-service is bor-

rowed from the queueing theory literature, where, in the context of a

single-server queue it is known that least-attained-service optimally

schedules jobs, assuming a Pareto (or any decreasing hazard rate)

workload distribution. After verifying that our workloads have this

characteristic, we show that our implementation of least-attained-

service thread prioritization reduces the time the cores spend stalling

and significantly improves system throughput. Furthermore, since

the periods over which we accumulate the attained service are long,

the controllers coordinate very infrequently to form the ordering of

threads, thereby making ATLAS scalable to many controllers.

We evaluate ATLAS on a wide variety of multiprogrammed SPEC

2006 workloads and systems with 4-32 cores and 1-16 memory con-

trollers, and compare its performance to five previously proposed

scheduling algorithms. Averaged over 32 workloads on a 24-core

system with 4 controllers, ATLAS improves instruction throughput

by 10.8%, and system throughput by 8.4%, compared to PAR-BS, the

best previous CMP memory scheduling algorithm. ATLAS’s perfor-

mance benefit increases as the number of cores increases.

1. Introduction

In modern chip-multiprocessor (CMP) systems, main memory
is a shared resource among the cores. Memory requests made by
different cores interfere with each other in the main memory sys-
tem, causing bank/row-buffer/bus conflicts [35] and serializing each
core’s otherwise parallel accesses in banks [36]. As the growth in
the number of cores integrated on-chip far exceeds the growth in off-
chip pin bandwidth [24], contention for main memory continues to
increase, making main memory bandwidth one of the major bottle-
necks in increasing overall system performance. If requests from
different cores are not properly prioritized in the main memory sys-
tem, overall system throughput can degrade and some cores can be
denied service for long time periods [32].

The memory controller (MC) is the intermediary between the

cores and main memory that prioritizes and schedules memory re-
quests. Cutting-edge processors [21, 2, 20, 54] employ multiple
memory controllers each of which controls a different portion (chan-
nel) of main memory. To provide large physical memory space to
each core, each core can access the memory controlled by any of
the memory controllers. As a result, different cores contend with
each other in multiple controllers. Ideally, the scheduling algorithm
employed by a memory controller in a multiple-memory-controller
system should have three properties: (i) the MC should maximize
system performance (throughput) without starving any cores, (ii) the
MC should be able to communicate with the system software, en-
forcing the thread priority structure dictated by the system software,
allowing the implementation of the QoS/fairness policies, (iii) the
MC should be scalable to a large number of memory controllers:
its implementation should not require significant coordination and
information exchange between different controllers to provide high
system performance.

Unfortunately, no previous scheduling algorithm satisfies all
these requirements. Some existing scheduling algorithms [46, 30,
45] do not require coordination among multiple controllers, but re-
sult in low system performance (throughput) in multi-core systems.
Other scheduling algorithms [35, 36] provide higher system through-
put and are configurable, but they require significant coordination
to achieve these benefits when implemented in a multiple-memory-
controller system. As we show in this paper, the best previous
algorithm in terms of system throughput, parallelism-aware batch
scheduling (PAR-BS) [36], is not scalable because it requires signifi-
cant coordination (information exchange) between different memory
controllers that may be located far apart on the chip. Coordination
is important because controllers need to agree on a consistent rank-
ing of threads to ensure threads are serviced in the same order in
each controller. This is needed to preserve bank-level parallelism
of each thread and thereby ensure high system throughput. Since
thread ranking is computed at the beginning of every batch of re-
quests (approximately every 2000 cycles), either per-thread informa-
tion within each controller needs to be frequently broadcast to all
controllers, or a global meta-controller needs to be designed that fre-
quently gathers thread information from each controller, computes a
thread ranking, and broadcasts the ranking to all controllers. Neither
option is scalable to a large number of controllers. Ideally, we would
like memory controllers to exchange as little information as possible
when scheduling memory requests because coordination incurs addi-
tional hardware complexity and power consumption costs, especially
in a large scale many-core system with potentially tens/hundreds of
memory controllers.

Our goal in this paper is to design a configurable memory
scheduling algorithm that provides the highest system throughput
without requiring significant coordination between controllers. To
this end, we develop a fundamentally new approach to memory
scheduling, called ATLAS (Adaptive per-Thread Least-Attained-
Service memory scheduling).

Key Ideas and Basic Operation ATLAS is based on two key
principles: Least-Attained-Service (LAS) based thread ranking to
maximize system throughput, and a long time quantum to provide
scalability. The basic mechanism is as follows. Execution time is di-
vided into long time intervals or periods, called quanta. During each
quantum, controllers keep track of how much service each thread has
attained from the memory system. At the beginning of a quantum,
controllers coordinate to determine a consistent ranking of threads,
where threads that have attained the least service from the memory
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controllers so far are ranked highest. During the course of a quan-
tum, every controller uses this ranking to prioritize higher-ranked
threads’ requests (i.e. threads that have attained the least service)
over other requests when making scheduling decisions. The idea
of favoring threads with least-attained-service is borrowed from the
queueing theory literature, where, in the context of a single-server
queue it is known that least-attained-service optimally schedules jobs
whose size (service requirement) is unknown, assuming a Pareto
(or any decreasing hazard rate) workload distribution. After veri-
fying that our workloads have these characteristics, we show that
our implementation of least-attained-service thread prioritization re-
duces the time the cores spend stalling and significantly improves
system throughput. Thread ranking also enables ATLAS to ensure
each thread’s bank-level parallelism is preserved, thereby preserving
single-thread performance. In addition to high system throughput,
ATLAS achieves 1) high scalability to a large number of memory
controllers because long quanta ensure that information exchange be-
tween controllers is very infrequent, 2) starvation-freedom by using
thresholding, which forces the servicing of a request that has been
outstanding for too long.

Results Our extensive experimental evaluation shows that AT-
LAS provides the highest system throughput compared to five pre-
vious memory schedulers in both single-controller and multiple-
controller systems. Compared to the best previous memory schedul-
ing algorithm, PAR-BS, ATLAS improves system throughput by
8.4% on a 24-core system with 4-MCs and by 10.8% on a 32-core
system with 4 MCs for a diverse set of multiprogrammed workloads.
We show that ATLAS requires significantly less coordination be-
tween memory controllers than PAR-BS and is therefore more scal-
able. We describe the reasons for performance and scalability bene-
fits and compare our work extensively (both qualitatively and quan-
titatively) to five previous memory scheduling algorithms on a wide
variety of systems with 4-32 cores and 1-16 memory controllers.

Contributions We make the following new contributions:

• We show that coordination across multiple memory controllers
is important to make good scheduling decisions that maximize
system performance, and that frequent coordination hinders scal-
ability of memory request scheduling algorithms. We propose
a novel, scalable, high-performance memory request scheduling
algorithm that significantly reduces the amount of coordination
needed between controllers. By monitoring thread behavior over
long periods of time (quanta), our proposed scheme performs
well even in the absence of coordination.

• We introduce the concept of Least-Attained-Service (LAS) based
memory request scheduling to maximize system throughput. We
analyze the characteristics of a large number of workloads in
terms of memory access behavior, and, based on this analy-
sis, provide a theoretical basis for why LAS scheduling im-
proves system throughput within the context of memory request
scheduling.

• We qualitatively and quantitatively compare the ATLAS sched-
uler to five previously proposed schedulers and show that it pro-
vides the best system throughput. ATLAS is also more scal-
able than the best previously-proposed memory access scheduler,
PAR-BS, in that it does not require frequent and large informa-
tion exchange between multiple memory controllers.

2. Background and Motivation

2.1. Background on CMP Memory Scheduling

Long-latency memory accesses are a significant performance lim-
iter in modern systems. When an instruction misses in the last-level
cache and needs to access memory, the processor soon stalls once
its instruction window becomes full [25, 34]. This problem becomes

more severe when multiple cores/threads1 share the memory system.
Since cores’ memory requests interfere with each other in the mem-
ory controllers and DRAM banks/buses/row-buffers, each core’s re-

1Without loss of generality, we will assume one core can execute one

thread, and use the terms core and thread interchangeably.

quest experiences additional delay, thereby increasing the time spent
by the core stalling. To maximize system performance, memory
scheduling algorithms need to minimize the total time cores spend
stalling by controlling inter-core interference.

Parallelism-aware batch scheduling (PAR-BS) [36] is the best
previous CMP memory scheduling algorithm that attempts to mini-
mize the average stall time by scheduling the thread with the shortest
stall-time first at a given instant during execution. Since we com-
pare to it extensively, we briefly describe its operation. PAR-BS
operates using two principles. First, it forms a batch of requests
among the outstanding ones in the DRAM request buffers and pri-
oritizes that batch over all other requests to prevent starvation. Sec-
ond, when a batch is formed, it forms a ranking of threads based
on their estimated stall time. The thread with the shortest queue
of memory requests (number of memory requests to any bank) is
heuristically considered to be the thread with the shortest stall-time
(i.e. the shorter job) and is ranked higher than others. By servicing
higher-ranked threads first within a batch, PAR-BS aims to 1) im-
prove system throughput and 2) preserve the bank-level-parallelism
of each thread, thereby preserving the benefits of latency tolerance
techniques. PAR-BS was shown to provide the highest system per-
formance compared to a wide variety of memory scheduling algo-
rithms using a single memory controller. Unfortunately, PAR-BS’s,
as well as several other scheduling algorithms’, scalability is limited
with multiple memory controllers, as we show below.

2.2. Need for Coordination between Multiple Mem-

ory Controllers in Previous Schedulers

Modern multi-core systems employ multiple memory controllers.
While previous proposals for memory scheduling algorithms were
focused on reducing inter-thread interference in a single MC, it is
now necessary to do the same for multiple MCs. The key aspect that
distinguishes a multiple-MC system from a single-MC system is the
need for coordination among MCs. Without coordination, each MC
is oblivious of others and prone to make locally greedy scheduling
decisions that conflict with other MCs’ decisions [33]. Specifically,
coordination is defined to be the exchange of information between
MCs so that they agree upon and make globally beneficial (instead
of purely local) scheduling decisions.

Figure 1 illustrates the need for coordination by comparing the
performance of two uncoordinated MCs against two coordinated
MCs. We assume that the MCs each implement PAR-BS, but later
present analysis for other scheduling algorithms in Section 4. For
illustration purposes, we will assume that a thread can continue com-

putation only when all of its memory requests are serviced.2 First,
consider the case where the two MCs are uncoordinated, shown in
Figure 1 (left). Each controller forms a ranking of threads based
purely on information about its own DRAM request buffers. From
the perspective of MC0, Thread 0 and Thread 1 have queue lengths of
one and two memory requests, respectively. Therefore, according to
the heuristic used by PAR-BS, Thread 0 is deemed to be the shorter
job and is scheduled first. While this may have been a good decision
if MC0 was the only controller in the system, MC0 neglects the fact
that Thread 0’s queue length in MC1 is larger and hence Thread 0
is actually the longer job from the viewpoint of the entire memory
system. As a result, both Thread 0 and Thread 1 experience three
bank access latencies until all their memory requests are serviced.

In contrast, if the two MCs were coordinated (i.e. aware of the
queue lengths of each thread in each other’s request buffers), MC0
would realize that Thread 0 has a queue length of 3 requests in MC1,
and therefore no matter what it does, Thread 0 would experience
three bank access latencies. Therefore, MC0 would rank Thread 1
higher and service it first even though it has a larger queue length
than Thread 0 in MC0’s buffers. Doing so reduces Thread 1’s stall
time to two bank access latencies without affecting Thread 0’s stall

2For simplicity and to ease understanding, this diagram abstracts many

details of the DRAM system, such as data bus conflicts and the row buffer.

Our evaluations model the DRAM system faithfully with all bus/bank/row-

buffer conflicts, queueing delays, and timing constraints.
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Figure 1. Conceptual example showing the importance of coordinating the actions of multiple memory controllers

time, leading to an overall improvement in system performance, as
shown in Figure 1 (right).

The critical observation is that, when the controllers are aware
of each others’ state, they can take coordinated actions that can im-
prove system performance. However, coordination does not come for
free. There are two ways to achieve coordination: 1) a centralized
meta-controller can collect information from all controllers, deter-
mine a thread ranking, and broadcast this ranking to all controllers,
2) each controller sends its information to every other controller, and
each controller independently computes the same ranking based on
this information. In either case, for the scheduling algorithm to be
scalable to tens/hundreds of controllers, it is preferable to communi-
cate a small amount of information, as infrequently as possible be-
tween the controllers. If communication is frequent, the pressure on
the links connecting the controllers increases and other traffic need-
ing these links can be delayed. Furthermore, the on-chip network
may be unable to provide latency guarantees to support frequent ex-
change of information. This particularly pertains to cases where MCs
are placed far apart on the die and the on-chip network distances be-
tween them are large [1].

For example, in PAR-BS, at the end of every batch, each con-
troller needs to send two pieces of its local information to either a
centralized meta-controller or to every other controller: each thread’s
1) maximum number of requests to any bank, 2) total number of
requests. With N threads and M controllers, the amount of infor-
mation to be sent to a centralized meta-controller (and the amount
of information the meta-controller sends back) is on the order of
O(N · M). All this information needs to be transmitted via the on-
chip network, which requires time. Since batches are very short (the
average batch length is 2000 cycles) and their length does not change
significantly as N and M increases, PAR-BS quickly becomes unscal-
able as N and M increases: the time it takes to communicate infor-
mation between controllers to determine the ranking quickly starts
exceeding the length of the batch for which the ranking needs to be
computed, leading to an ineffective algorithm.

Our goal in this work is to fundamentally re-design the memory
scheduling algorithm such that it provides high system throughput
yet requires little or no coordination among controllers and therefore
scales well to multiple-memory-controller systems.

2.3. Background on the Pareto Distribution and

LAS

Many empirical measurements of computer workloads have
found that the service requirements of jobs follow a Pareto distri-

bution. Examples include Unix process lifetimes [16], sizes of files
transferred through the Web [9, 10], sizes of files stored in Unix file
systems [23], durations of FTP transfers in the Internet [40], and
CPU requirements for supercomputing jobs [48].

Mathematically, a Pareto distribution with parameter α is defined
by:

Probability{Job size > x} = k · x−α

where k, α > 0 are constants. Practically, a Pareto distribution has
3 important characteristics [15]: (i) very high (or infinite) variability,
(ii) the heavy-tailed property (also known as “mice and elephants”),
whereby just 1% of the largest jobs (the elephants) comprise half the
total load, and (iii) decreasing hazard rate (DHR), which roughly
states that the longer a job has run so far, the longer it is expected to
run. Thus, if a job has run for a short time so far, then it is expected to
end soon, but the longer the job runs without completing, the longer
it is expected to continue running. It is this DHR property that is
exploited by LAS scheduling.

It is well-known that scheduling to favor jobs which will com-
plete soonest – Shortest-Remaining-Processing-Time (SRPT) – is
optimal for minimizing latency [47] since it minimizes the number
of jobs in the system. However in many situations, including that in
this paper, the job’s size (service requirement) is not known a pri-
ori. Fortunately, if the job sizes follow a distribution with DHR,
then favoring those jobs which have received the least service so far
is equivalent to favoring jobs which are expected to complete soon-
est. The Least-Attained-Service (LAS) scheduling policy prioritizes
those jobs which have attained the least service so far. LAS is prov-
ably optimal under job size distributions with DHR, and unknown
job sizes [44]. The LAS policy has been applied in various settings,
most notably flow scheduling, where the flow duration is not known
a priori, but prioritizing towards flows which have transmitted the
fewest packets so far ends up favoring short flows (via the DHR prop-
erty of flow durations) [42, 5, 49].

3. Mechanism

This section builds step-by-step the basic ideas and notions that
are used to arrive at the ATLAS scheduling algorithm, which satisfies
our goals of high system throughput with little coordination needed
between the controllers. Section 3.1 provides the final resulting al-
gorithm and describes its qualitative properties.

Motivating Ideas During its life cycle, a thread alternates be-
tween two episodes as shown in Figure 2: 1) memory episode, where



the thread is waiting for at least one memory request,3 2) compute
episode, where there are no memory requests by the thread. Instruc-
tion throughput (Instructions Per Cycle) is high during the compute
episode, but low during the memory episode. When a thread is in
its memory episode, it is waiting for at least one memory request to
be serviced and, as mentioned previously, is likely to be stalled, de-
grading core utilization. Therefore, to maximize system throughput,
our goal in designing a scalable memory scheduling algorithm is to
minimize the time threads spend in their memory episodes.
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Figure 2. Memory vs. compute episodes in a thread’s execution time

Shortest-Remaining-Memory-Episode Scheduling To mini-
mize the time threads spend in memory episodes, we want to pri-
oritize the thread whose memory episode will end soonest. By pri-
oritizing any other thread in the memory controller (i.e., one whose
memory episode will end later), or by prioritizing none, all threads
experience prolonged memory episodes and contribute very little to
overall system throughput. Prioritizing the thread whose memory
episode will complete soonest is reminiscent of SRPT (Shortest-
Remaining-Processing-Time) scheduling, which is provably optimal
for job scheduling in a single-server queue, see Section 2.3.

How to Predict Which Memory Episode will End Soonest Un-
fortunately, the MC does not know which thread’s memory episode
will end soonest. The lengths of memory episodes are not known
a priori and are hard to predict because a thread may initially have
a few outstanding memory requests, but may continuously generate
more requests as soon as some are serviced and, eventually, turn out
to have a very long memory episode. But, what the MC does know is
the attained service of an episode. Attained service is defined as the
total amount of memory service (in cycles) that a memory episode
has received since it started, see Figure 3.
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Figure 3. Attained service versus remaining service within a memory

episode, viewed at time T

The key point that we exploit is that the attained service of a mem-
ory episode is an excellent predictor of the remaining length (service)
of the memory episode, if the memory episode lengths follow a distri-
bution with decreasing hazard rate (DHR). Specifically, as explained
in Section 2.3, under DHR, the longer the attained service of a given
memory episode, the longer its expected remaining service will be.
Thus, under DHR, favoring episodes with least attained service (LAS
scheduling) will result in favoring memory episodes which will end
soonest.

Fortunately, our measurements show that memory episode
lengths indeed follow a distribution with DHR, namely a Pareto
distribution. We collected statistics on memory episode lengths
across tens of SPEC 2006 workloads and found that memory episode
lengths consistently follow a Pareto (DHR) distribution. Figure 4
shows the distribution of memory episode lengths for three repre-
sentative SPEC 2006 applications, soplex, bzip2, and calculix. The

3There may be multiple outstanding requests by a thread due to the use

of techniques that exploit memory-level parallelism, such as out-of-order ex-

ecution, runahead execution, and non-blocking caches.

Pareto distribution is obvious from the linear fit on the log-log scale.

Note that the R2 value is very high, indicating that the Pareto distri-
bution is indeed a good fit. We found that 26 of the 29 SPEC 2006
benchmarks have Pareto-distributed memory episode lengths.

Because of the DHR property of episode lengths, maximal
throughput is achieved by a LAS policy which favors those threads
with smallest attained memory episode time.

Taking Long-Term Thread Behavior into Account Favoring
threads whose memory episodes will end soonest will certainly max-
imize system throughput in the short term. However it does not
take longer-term thread behavior into account. The issue is that a
thread does not consist of a single memory-plus-compute cycle, but
rather many cycles, and different threads can have different long-
term memory intensities, where the intensity denotes the long-run
fraction of time spent in memory episodes. Consider an example
where two threads, A and B, of differing memory-intensity are shar-
ing the memory. Thread A is a highly memory-intensive thread with
many short memory episodes and even shorter compute episodes in
between the memory episodes. On the other hand, Thread B is a very
memory non-intensive thread that has a few longer memory episodes,
with very long compute episodes in between. If we performed sim-
ple LAS scheduling, Thread A would be prioritized and would reach
its compute episode faster. However, since its compute episode is so
short, soon afterwards it would go back to stalling in another memory
episode, thereby hindering system throughput. On the other hand,
if the memory scheduler prioritizes Thread B’s episode, Thread B
would reach its very long compute episode faster and afterwards it
would not compete with Thread A in memory for a long time. Hence,
it is clear that one would like to service Thread B first because doing
so would result in very long stretches of compute episodes. This is
in contrast to the short-term optimizations made by per-episode LAS
scheduling.

To take into account both short-term and long-term optimizations,
we generalize the notion of LAS to include a larger time interval than
just a single episode. The ATLAS (Adaptive per-Thread LAS) mem-
ory controller divides time into large but fixed-length intervals called
quanta. During each quantum, the memory controller tracks each
thread’s total attained service for that quantum. At the beginning of
the next quantum, the memory controller ranks the threads based on
their attained service in the past, weighting the attained service in
the recent past quanta more heavily than the attained service in older
quanta. Specifically, for any given thread, we define:

TotalASi = αTotalASi−1 + (1 − α)ASi (1)

ASi: Attained service during quantum i alone (reset at the beginning of a quantum)

TotalASi: Total attained service summed over all quanta up to the end of quantum i

(reset at a context switch)

Here α is a parameter 0 ≤ α < 1, where lower α indicates a
stronger bias towards the most recent quantum. We generally use
α = 0.875, but evaluate the effect of different α in Section 7.3.

During the course of quantum i+1, the controller uses the above
thread ranking based on TotalASi, favoring threads with lower
TotalASi, that is lower total attained service. Observe that when
using thread-based attained service, the memory-intensive Thread A
gets served a lot at the beginning, since Thread B is idle. However,
once Thread B starts a memory episode, Thread B has the lowest at-
tained service, since Thread A has at this point already accumulated
a lot of service. In fact, Thread B is able to complete its memory
episode, entering a long compute episode, before Thread A is sched-
uled again.

Multiple Memory Controllers When there are multiple mem-
ory controllers, the attained service of a thread is the sum of the
individual service it has received from each MC. As a result, at the
beginning of a new quantum, each MC needs to coordinate with other
MCs to determine a consistent thread ranking across all MCs. Con-
trollers achieve this coordination by sending the local attained ser-
vice of each thread to a centralized agent in the on-chip network that
computes the global attained service of each thread, forms a rank-
ing based on least-attained-service, and broadcasts the ranking back
to each controller. Since the quantum is relatively long (as demon-
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Figure 4. Pareto distribution of memory episode lengths in three applications

strated in our experimental results, Section 7.3), controllers need to
coordinate very infrequently, making the approach scalable.

More Advantages of LAS-Based Thread Ranking LAS-based
thread ranking provides two major benefits. First, as explained
above, it maximizes system throughput within a quantum by mini-
mizing the time spent in memory episodes. Second, it ensures that
a thread’s concurrent requests are serviced in parallel in the mem-
ory banks instead of being serialized due to inter-thread interference,
thereby preserving the bank-level parallelism of each thread [36].
It is important to note that thread ranking does not imply that the
memory requests of a lower-ranked thread are serviced only after
those of higher-ranked threads have all been serviced. If a lower-
ranked thread has a request to a bank where there are no higher-
ranked thread’s requests, then the lower-ranked thread’s request is
scheduled.

Guaranteeing Starvation Freedom Since the thread that was
serviced least in the past is assigned the highest ranking for the next
quantum, ATLAS ensures that no thread is left behind for too long.
However, this non-starvation guarantee can take a while to take ef-
fect because the rankings are not updated very frequently. To provide
a stricter non-starvation guarantee, ATLAS uses thresholding: when
a memory request has not been serviced for T cycles after entering
the memory controller, it is prioritized over all requests. We em-
pirically find that a threshold value of T = 100K cycles provides
a reasonable non-starvation guarantee while retaining high system
throughput (Section 7.3).

3.1. Putting It All Together: The ATLAS Algorithm

Rule 1 summarizes the ATLAS scheduling algorithm by showing
the request prioritization rules employed by each memory controller
when scheduling requests. Each controller maximizes system per-
formance (via least-attained-service scheduling and exploiting row-
buffer locality) and prevents starvation (via thresholding and updat-
ing attained service values at the end of each quantum).

Rule 2 describes the actions taken by controllers at the end of
each quantum to determine a consistent LAS-based ranking among
all threads. Note that each controller keeps only the AS value in the
last quantum for each hardware thread. The meta-controller keeps
the TotalAS value for each thread and performs the computation
shown in Equation 1.

Rule 1 ATLAS: Request prioritization in each memory controller

1: TH—Over-threshold-requests-first: Requests that have been

outstanding for more than T cycles in the memory controller are

prioritized over all others (to prevent starvation for a long time).

2: LAS—Higher-LAS-rank-thread-first: Requests from threads

with higher LAS-based-rank are prioritized over requests from

threads with lower LAS-based rank (to maximize system perfor-

mance and preserve per-thread bank-level parallelism).

3: RH—Row-hit-first: Row-hit requests are prioritized over row-

conflict/closed requests (to exploit row buffer locality).

4: FCFS—Oldest-first: Older requests are prioritized over

younger requests.

Rule 2 ATLAS: Coordination at the end of a quantum

1: Each MC sends each thread’s local attained service (AS) in the

last quantum to a central meta-controller. Afterwards, AS value

is reset.

2: Meta-controller accumulates all local AS values for each thread

and updates the TotalAS value of each thread according to Equa-

tion 1.

3: Meta-controller ranks threads based on TotalAS values; threads

with lower TotalAS values are ranked higher.

4: Meta-controller broadcasts the ranking to all controllers.

5: Each MC updates thread ranks when it receives the broadcast

ranking. New ranking is used for scheduling in the next quan-

tum.

3.2. Support for System Software

So far, we described ATLAS assuming all threads are of equal
importance. If this is the case, ATLAS aims to maximize system
throughput by prioritizing memory non-intensive threads over others.
However, this is not the right prioritization choice if some threads
are more important (i.e. have higher weight, or thread priority) than
others. To enforce thread weights, system software communicates
thread weights to the ATLAS memory controller, as in [35, 36].
When updating the attained service of a thread, ATLAS scales the
attained service with the weight of the thread as follows:

TotalASi = αTotalASi−1 +
(1 − α)

thread weight
ASi (2)

Observe that a thread with a higher weight appears as if it at-
tained less service than it really did, causing such threads to be
favored. Section 7.6 quantitatively evaluates ATLAS’s support for
thread weights.

In addition, we make the quantum length and starvation threshold
(in terms of cycles) configurable by system software such that it can
enforce a desired balance between system throughput and fairness.

4. Qualitative Comparison with Previous

Scheduling Algorithms

We compare the basic properties of the ATLAS scheduler with
major previous memory scheduling algorithms. The fundamental
difference of ATLAS from all previous algorithms is that no previous
memory scheduling algorithm tries to prioritize threads by taking
into account their long-term memory intensity, aiming to prioritize
memory non-intensive threads over memory-intensive threads in the
long run. Previous memory scheduling algorithms have one or more
of the following shortcomings: 1) their system throughput is low
mainly because they perform locally greedy scheduling, 2) they re-
quire very high coordination between multiple MCs, 3) they depend
on heuristics that become increasingly inaccurate as the number of
MCs or the number of threads in the system increases.

First-come-first-serve (FCFS) services memory requests in ar-
rival order. Therefore, unlike ATLAS, it does not distinguish be-
tween different threads or different memory episodes. FCFS inher-



Register Description and Purpose Size (additional bits)

Per-request registers in each controller

Over-threshold Whether or not the request is over threshold 1
Thread-rank The thread rank associated with the request log

2
NumThreads (=5)

Thread-ID ID of the thread that generated the request log
2

NumThreads (=5)

Register in each controller

QuantumDuration How many cycles left in the quantum log
2

QuantumLength (=24)

Per-thread registers in each controller

Local-AS Local Attained Service of the thread in the controller log
2
(QuantumLength · NumBanks) (=26)

Per-thread registers in meta-controller

TotalAS Total Attained Service of the thread log
2
(NumControllers · QuantumLength · NumBanks) (=28)

Table 1. Additional state (over FR-FCFS) required for a possible ATLAS implementation

ently favors memory-intensive threads because their requests natu-
rally appear older to the memory controller as they arrive more fre-
quently than requests of non-intensive threads. In addition, FCFS
does not exploit row-buffer locality, nor does it preserve bank-level
parallelism of threads across banks or controllers. As a result, it
leads to low system throughput [38, 35, 36] even though it requires
no coordination across controllers.

First-ready FCFS (FR-FCFS) [59, 46, 45] is commonly imple-
mented in existing controllers. It prioritizes: 1) row-hit requests over
all others, 2) older requests over younger ones. By prioritizing row-
hit requests, it aims to maximize DRAM throughput, but as shown
in previous work [35, 36, 32] this thread-unaware policy leads to low
system throughput and starvation of threads with low row-buffer lo-
cality. FR-FCFS also shares the shortcomings of FCFS as described
above.

Fair queueing memory scheduler (FQM) [38, 41] is based on
the fair queueing algorithm [11] from computer networks. It at-
tempts to partition memory bandwidth equally among threads. For
each thread, in each bank, FQM keeps a counter called virtual time
and increases this counter when a memory request of the thread is
serviced. FQM prioritizes the thread with the earliest virtual time,
trying to balance each thread’s progress in each bank. As a result,
FQM does not take into account the long-term memory intensity of
threads and therefore cannot prioritize memory non-intensive threads
over others. In addition, FQM 1) degrades bank-level parallelism of
each thread because each bank makes scheduling decisions indepen-
dently, 2) does not exploit row-buffer locality to a large extent, both
of which lead to low system throughput compared to other schedul-
ing algorithms [35, 36]. Since each bank acts independently in FQM,
FQM does not require coordination across controllers, but this comes
at the expense of relatively low system performance.

Stall-time fair memory scheduler (STFM) [35] estimates the
slowdown of each thread compared to when it is run alone by quan-
tifying the interference between threads. If unfairness in the memory
controller is greater than a threshold, it prioritizes the thread that has
been slowed down the most. STFM has three shortcomings com-
pared to ATLAS. First, like FQM, it does not consider the long-term
memory-intensity and does not preserve bank-level parallelism of
threads. Second, it is designed for a single memory controller and
requires extensive and very fine-grained coordination among con-
trollers to be effective. To estimate a thread’s slowdown, STFM
keeps a per-thread interference counter, which is incremented by a
certain amount each time another thread’s request is scheduled in-
stead of a request from this thread. The amount of increment depends
on the estimate of bank-level parallelism of the thread in the memory
system at that particular instant. In a multiple-MC system, MCs need
to coordinate to determine this amount of increment since a thread’s
bank-level parallelism in the entire system cannot be locally known
by a single-MC. This coordination is very fine-grained because it
happens when a request is scheduled. Third, STFM quantifies mem-
ory interference using heuristics that are only approximations of the
true value [35, 36]. Compared to a single-MC system, a multiple-MC
system supports many more threads that interfere with each other in
increasingly complex ways. As a result, the accuracy of estimated
memory interference values (especially bank-level parallelism) de-
grades in a multiple-MC system (as shown for a multi-bank system
in [36]).

Parallelism-aware batch scheduling (PAR-BS) [36] was de-
scribed previously in Section 2.1. Compared to ATLAS, PAR-BS

has three shortcomings. First, in contrast to the long quantum size in
ATLAS, the batch duration in PAR-BS (on average ∼2000 cycles) is
not large enough to capture the entirety of a memory episode. There-
fore, a relatively short memory episode may be broken into pieces
and serviced separately across batches, causing longer episodes (or
memory-intensive threads) to be prioritized over shorter episodes (or
non-intensive threads). Second, since the batch size is small, PAR-
BS’s coordination overhead to form a thread ranking at the end of
each batch is very significant as described in Section 2.2 making it

unscalable to a large number of controllers.4 Third, PAR-BS’s mech-
anisms become increasingly inaccurate as the number of threads and
MCs in the system increases. When a thread has requests to multi-
ple banks, the bank to which it has the most requests is considered
by PAR-BS to dominate the memory latency of that thread. There-
fore, to prioritize shorter threads within a batch, PAR-BS assigns the
highest rank to the thread that has the lowest number of requests to
any bank. In reality, the bank to which the thread has the most re-
quests may service those requests more quickly than the other banks
because other banks might be very heavily loaded with many other
less-intensive threads’ requests. As more threads compete for more
MCs, such load imbalance across banks potentially grows and results
in suboptimal thread ranking in PAR-BS.

5. Implementation and Hardware Cost

ATLAS requires the implementation of request prioritization
rules in each controller (Rule 1) as well as coordination of controllers
at the end of each quantum (Rule 2). Modern FR-FCFS-based con-
trollers already implement request prioritization policies that take
into account row-hit status and age of each request. ATLAS adds
to them the consideration of the thread-rank and over-threshold sta-
tus of a request. Whether a request is over-threshold is determined
by comparing its age to threshold T , as done in some existing con-
trollers [52] to prevent starvation.

To implement quanta, each memory controller keeps a quantum
duration counter. To enable LAS-based thread ranking, each con-
troller needs to maintain the local AS (attained service) value for
each thread. AS for a thread is incremented every cycle by the num-
ber of banks that are servicing that thread’s requests. At the end of a
quantum, each thread’s local AS value is sent to the meta-controller
and then reset to zero. The meta-controller keeps the TotalAS value
for each thread and updates it as specified in Equation 1.

Table 1 shows the additional state information required by AT-
LAS. Assuming a 24-core CMP with 4 MCs, each of which with
128-entry request buffers and 4 banks, one meta-controller, and a
quantum length of 10M cycles, the extra hardware state, including
storage needed for Thread-IDs, required to implement ATLAS be-
yond FR-FCFS is 8,896 bits. None of the logic required by ATLAS
is on the critical path of execution because the MC makes a decision
only every DRAM cycle.

6. Evaluation Methodology

We evaluate ATLAS using an in-house cycle-precise x86 CMP
simulator. The functional front-end of the simulator is based on
Pin [28] and iDNA [4]. We model the memory system in detail,

4Note that there is no easy way to increase batch size in PAR-BS because

thread ranking within a batch is formed based on the requests currently in the

DRAM request buffers.



Processor pipeline 5 GHz processor, 128-entry instruction window (64-entry issue queue, 64-entry store queue), 12-stage pipeline

Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memory operation

L1 Caches 32 K-byte per-core, 4-way set associative, 32-byte block size, 2-cycle latency

L2 Caches 512 K-byte per core, 8-way set associative, 32-byte block size, 12-cycle latency, 32 MSHRs

Each DRAM controller (on-chip) FR-FCFS; 128-entry request buffer, 64-entry write data buffer, reads prioritized over writes, XOR-based address-to-bank mapping [14, 57]

DRAM chip parameters Micron DDR2-800 timing parameters (see [31]), tCL=15ns, tRCD=15ns, tRP =15ns, BL/2=10ns; 4 banks, 2K-byte row-buffer per bank

DIMM configuration Single-rank, 8 DRAM chips put together on a DIMM (dual in-line memory module) to provide a 64-bit wide channel to DRAM

Round-trip L2 miss latency For a 64-byte cache line, uncontended: row-buffer hit: 40ns (200 cycles), closed: 60ns (300 cycles), conflict: 80ns (400 cycles)

Cores and DRAM controllers 4-32 cores, 1-16 independent DRAM controllers (1 controller has 6.4 GB/s peak DRAM bandwidth)

Table 2. Baseline CMP and memory system configuration

# Benchmark L2 MPKI RB hit rate Mem-fraction Epi. length # Benchmark L2 MPKI RB hit rate Mem-fraction Epi. length

1 429.mcf 107.87 9.0% 99.2% 33512 14 401.bzip2 5.29 63.1% 52.3% 810
2 450.soplex 52.89 68.3% 99.4% 4553 15 464.h264ref 2.38 77.8% 35.9% 751
3 462.libquantum 52.88 98.4% 100.0% 200M 16 435.gromacs 2.14 55.6% 40.6% 498
4 459.GemsFDTD 49.72 11.7% 99.2% 1970 17 445.gobmk 0.73 45.8% 18.6% 483
5 470.lbm 45.68 48.5% 94.0% 1049 18 458.sjeng 0.38 1.8% 17.3% 437
6 437.leslie3d 32.38 42.6% 94.4% 2255 19 403.gcc 0.33 45.5% 6.2% 588
7 433.milc 27.90 62.7% 99.1% 1118 20 481.wrf 0.25 62.5% 10.5% 339
8 482.sphinx3 25.00 72.7% 96.6% 805 21 447.dealII 0.21 65.0% 6.3% 345
9 483.xalancbmk 23.25 42.8% 90.0% 809 22 444.namd 0.19 82.3% 4.6% 424

10 436.cactusADM 22.23 1.5% 86.3% 1276 23 400.perlbench 0.12 54.9% 2.1% 867
11 471.omnetpp 9.66 29.2% 82.0% 4607 24 454.calculix 0.10 67.0% 2.9% 334
12 473.astar 8.57 35.4% 86.5% 526 25 465.tonto 0.05 73.3% 0.9% 587
13 456.hmmer 5.63 32.4% 77.3% 815 26 453.povray 0.03 74.3% 0.7% 320

Table 3. Benchmark characteristics when run on the baseline (L2 MPKI: L2 Misses per 1000 Instructions; RB Hit Rate: Row-buffer hit rate; Mem-fraction:
Fraction of execution time spent in memory episodes; Epi. length: Average length of memory episodes in cycles)

faithfully capturing bandwidth limitations, contention, and enforcing
bank/port/channel/bus conflicts. Table 2 shows the major DRAM and
processor parameters in the baseline configuration. Our main evalu-
ations are done on a 24-core system with 4 memory controllers.

Workloads We use the SPEC CPU2006 benchmarks for evalua-
tion.5 We compiled each benchmark using gcc 4.1.2 with -O3 op-
timizations and chose a representative simulation phase using Pin-
Points [39]. Table 3 shows benchmark characteristics.

We classified the benchmarks into two categories: memory-
intensive (those with greater than 10 L2 misses per 1000 instructions
using the baseline L2 cache) and memory non-intensive (with less
than 10 MPKI). We form multi-programmed workloads of varying
heterogeneity. For our main evaluations on the 24-core system, we
use 32 workloads, each comprising 24 benchmarks, of which 12 are
memory-intensive and 12 are non-intensive. This provides a good
mix of heavy and light applications in terms of memory behavior,
that is likely to be a common mix in future many-core based sys-
tems, e.g. in cloud computing. Table 4 lists eight of the representa-
tive workloads that we show results for in Section 7. As we scale the
number of cores (i.e. benchmarks in a workload), we keep the frac-
tion of memory-intensive benchmarks constant (at 50%) in the work-
load. We use 32 workloads to evaluate each core-controller configu-
ration. We also varied the fraction of memory-intensive benchmarks
in each workload from 0%, 25%, 50%, 75%, 100% and constructed
32 workloads for each category to evaluate the effect of ATLAS with
varying memory load, for the experiments described in Section 7.2.

Experiments and Metrics We run each simulation for 200 mil-
lion cycles. During the simulation, if a benchmark finishes all of its
representative instructions before others, its statistics are collected
but it continues to execute so that it exerts pressure on the memory
system. We use two main metrics to evaluate performance. Instruc-
tion throughput is the average number of instructions retired by all
cores per cycle during the entire run. We measure system through-
put using the commonly-employed weighted speedup metric [51],
which sums the Instructions Per Cycle (IPC) slowdown experienced
by each benchmark compared to when it is run alone for the same
number of instructions as it executed in the multi-programmed work-
load:

Sys. Throughput = Weighted Speedup =
X

i

IPCshared

i

IPCalone

i

(3)

5410.bwaves, 416.gamess, and 434.zeusmp are not included because we

were not able to collect representative traces for them.

Parameters of Evaluated Schemes For ATLAS, we use a quan-
tum length of 10M cycles, α = 0.875, and T = 100K cycles. For
STFM and PAR-BS, we use the best parameters described in [35,
36].

7. Results

We first present the performance of ATLAS in comparison with
four previously proposed scheduling algorithms (FCFS, FR-FCFS,
STFM, and PAR-BS) implemented in each controller and an ideally-
coordinated version of the PAR-BS algorithm (referred to as PAR-
BSc) on a baseline with 24 cores and 4 memory controllers. In PAR-
BSc, each controller is assumed to have instant global knowledge
about the information available to every other controller, and based
on this each controller determines a consistent ranking of threads at
the beginning of a batch. As such, this algorithm is idealistic and
un-implementable (because it assumes instantaneous global knowl-
edge). However, since this algorithm provides an upper bound on
what is achievable with the addition of coordination to previous
scheduling algorithms, we provide comparisons to it in our evalu-
ation for thoroughness.

Figure 5 shows the instruction and system throughput provided
by the six algorithms on eight representative workloads and aver-
aged over all 32 workloads run on the 24-core system with 4 mem-
ory controllers. On average, ATLAS provides 10.8% higher instruc-
tion throughput and 8.4% higher system throughput compared to
the best previous implementable algorithm, PAR-BS, which signif-
icantly outperforms FCFS, FR-FCFS, and STFM. Even compared
to the un-implementable, idealized coordinated PAR-BSc, ATLAS
provides 7.3%/5.3% higher average instruction/system throughput.
The performance improvement of ATLAS is consistent across all
32 workloads we studied. ATLAS’s maximum and minimum sys-
tem performance improvement over PAR-BS is 14.5% and 3.4%, re-
spectively. Note that ATLAS improves average instruction/system
throughput by 17.1%/13.2% over the commonly-implemented FR-
FCFS algorithm. We conclude that ATLAS performs better than pre-
vious scheduling algorithms.

Figure 6 compares the instruction/system throughput of the six
algorithms while varying the number of memory controllers from
1 to 16 in the 24-core system. Percentages on top of bars indi-
cate ATLAS’s improvement over the best previous implementable
algorithm (STFM in single-MC and PAR-BS in multiple-MC sys-
tems). As expected, as the number of MCs increases, overall sys-
tem performance also increases because the memory system expe-



Workload Memory-intensive benchmarks Memory non-intensive benchmarks

A cactusADM, GemsFDTDs(2), lbm, leslie(2), mcf, milc, soplex(2), xalancbmk(2) astar, bzip2, calculix(3), deall, gobmk(2), omnetpp(2), sjeng, tonto

B GemsFDTDs, lbm, leslie, libquantum, mcf(2), milc, soplex(3), sphinx3(2) astar(3), bzip2(2), calculix(2), dealII, hmmer, namd, povray, wrf

C cactusADM, GemsFDTD(2), lbm(3), mcf, milc(2), soplex(2), sphinx3, bzip2(2), dealII(2), gcc(2), h264ref, hmmer, perl, sjeng, tonto(2)

D GemsFDTD(3), lbm, leslie, libquantum, milc, soplex, sphinx3(3), xalancbmk bzip2, dealII, calculix, gobmk, gromacs, h264ref(2), hmmer, perl, povray, sjeng, wrf

E GemsFDTD(2), leslie(2), mcf(2), soplex(2), sphinx3, xalancbmk(3) astar(2), dealII, gcc(2), hmmer, namd(2), perl(2), wrf(2)

F GemsFDTD, lbm, leslie(2), libquantum(3), mcf(2), milc, sphinx3, xalancbmk astar(2), bzip2, dealII, gcc(3), gobmk, sjeng, tonto(2), wrf

G cactusADM, lbm, leslie(4), libquantum , mcf, sphinx3(3), xalancbmk astar, bzip2(2), gobmk, hmmer(3), omnetpp, perl(2), povray, tonto

H cactusADM, GemsFDTD, libquantum, mcf(4), milc(2), sphinx3, xalancbmk(2) astar(3), bzip2, gcc, hmmer, namd, sjeng, tonto(3), wrf

Table 4. Eight representative workloads evaluated (figure in parentheses denotes the number of instances spawned)
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Figure 5. ATLAS vs. other algorithms on 8 sample workloads and averaged over 32 workloads on the 24-core system with 4-MCs
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Figure 6. Performance of ATLAS vs. other algorithms on the 24-core system with varying number of memory controllers

riences lighter load per controller at the expense of increased sys-
tem cost due to increased pin count. ATLAS provides the high-
est instruction/system throughput in all cases. However, ATLAS’s
performance advantage over PAR-BS increases when memory band-
width becomes more scarce, i.e. MCs are more heavily loaded: AT-
LAS’s instruction/system throughput improvement over PAR-BS is
14.8%/9.8% on a system with two MCs and 7.6%/5.9% on a costly
system with 8 MCs. On a single-MC system, ATLAS performs
22.4%/17.0% better than STFM, the best previous algorithm for that
system. We conclude that ATLAS is more effective than previous
algorithms at utilizing the scarce memory bandwidth.

Analysis Several observations are in order from the above results:

First, as expected, FCFS and FR-FCFS policies, which are
thread-unaware and prone to starvation, perform significantly worse
than PAR-BS and ATLAS, which are thread-aware, starvation-free,
and aimed to optimize system performance. Even though FR-FCFS
maximizes DRAM throughput by exploiting row-buffer locality, its
performance improvement over FCFS is small (0.3%), because al-
ways prioritizing row-hit requests over others leads to threads with
high row-buffer locality to deny service to threads with low row-
buffer locality, leading to degradations in system throughput.

Second, STFM, provides lower system performance than FR-
FCFS or FCFS in multiple-MC systems even though it performs bet-
ter than all algorithms but ATLAS in the single-MC system. This is
because each MC implements the STFM algorithm by itself without
any coordination. As a result, each MC computes a different slow-
down value for each thread and aims to balance the slowdowns of
threads locally, instead of all controllers computing a single slow-
down value for each thread and consistently trying to balance thread
slowdowns. Unfortunately, the slowdown a thread experiences in
one controller is usually significantly different from that it experi-
ences in another, which causes the MCs to make conflicting thread
prioritization decisions. Section 4 shows that it is difficult to de-
sign a coordinated version of STFM as it incurs high coordination
costs due to the amount of information that needs to be exchanged
between controllers every DRAM cycle. Note that with a single con-
troller, STFM outperforms FCFS, FR-FCFS, and PAR-BS by 25.2%,
23.6%, 5.4% on average, proving that the algorithm is effective for a

single MC but not scalable to multiple MCs.

Third, the idealized coordinated version of PAR-BS (called PAR-
BSc), which we have developed, outperforms the uncoordinated
PAR-BS by 3.3%/3.0% on average in terms of instruction/system
throughput because it ensures consistent thread prioritization across
all controllers. However, both PAR-BS and PAR-BSc suffer from
three shortcomings. First, they perform request batching at too fine
a granularity compared to ATLAS (see Section 4). Second, their
shortest stall-time-first heuristic used for thread ranking becomes in-
creasingly inaccurate with a large number of threads (see Section 4).
Third, since batches are formed based on request counts, batches
are not balanced across controllers due to request count imbalance
among controllers. This causes some controllers to opportunistically
service requests while others are obeying thread ranking, leading to
conflicting thread prioritization decisions among controllers.

7.1. Scalability with Cores and Memory Controllers

Figure 7 compares the performance of ATLAS with PAR-BS and
the idealistic PAR-BSc when core count is varied from 4 to 32. We
have results for FCFS, FR-FCFS, and STFM for all configurations,
but do not show these due to space constraints. PAR-BS provides
significantly better system performance than any of these algorithms
for all configurations. The percentages on top of each configura-
tion show the performance improvement of ATLAS over the imple-
mentable PAR-BS. Each graph presents system performance results
averaged over 32 workloads on each core configuration with varying
number of memory controllers; we did not tune ATLAS parameters
in any configuration. We make several major observations. First, AT-
LAS outperforms all other algorithms for all configurations. Second,
ATLAS’s performance improvement over PAR-BS increases as the
number of cores increases. For example, if the MC count is fixed to
4, ATLAS outperforms PAR-BS by 1.1%, 3.5%, 4.0%, 8.4%, 10.8%
respectively in the 4, 8, 16, 24, and 32-core systems. Hence, AT-
LAS’s benefits are likely to become more significant as core counts
increase with each technology generation.
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Figure 7. ATLAS performance with varying number of cores and memory controllers

7.2. Effect of Memory-Intensity in the Workload

Figure 8 compares ATLAS’s performance to other scheduling al-
gorithms on the 24-core 4-MC system as the number of memory-
intensive benchmarks in each workload is varied between 0 and 24,
which varies the load on the memory controllers. All benchmarks in
an intensity class were selected randomly, and experiments were per-
formed for 32 different workload mixes for each memory-intensity
configuration.

Three major conclusions can be made from the results. First,
ATLAS provides the highest system performance compared to the
best previous algorithm (both PAR-BS and PAR-BSc) for all differ-
ent types of workload mixes: respectively 3.5%, 6.1%, 8.4%, 7.7%,
and 4.4% higher performance than PAR-BS for workload mixes with
0, 6, 12, 18, and 24 memory-intensive workloads. Second, ATLAS’s
performance improvement is highest when the workload mix is more
heterogeneous in terms of memory intensity, e.g. when 12 or 18 of
the 24 benchmarks in the workload are memory intensive. This is
because scheduling decisions have more potential to improve system
performance when workloads are more varied: ATLAS assigns the
memory-intensive threads lower rankings and prevents the memory
episodes of the other threads from being stuck behind longer ones.
Therefore the majority of the threads are quickly serviced and re-
turned to their compute episodes. Third, when a workload consists
of all memory-intensive or all memory non-intensive threads, AT-
LAS’s performance improvement is less pronounced because 1) the
disparity between the memory episode lengths of threads is lower, 2)
scheduling decisions have less of an impact on system performance
due to too light or too heavy load. However, ATLAS is still able to
distinguish and prioritize threads that are of lower memory-intensity
and, hence, still outperforms previous scheduling algorithms in such
workload mixes. We conclude that ATLAS is effective for a very
wide variety of workloads but provides the highest improvements in
more heterogeneous workload mixes, which will likely be the com-
mon composition of workloads run on future many-core systems.
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Figure 8. ATLAS performance on the 24-core 4-MC system when number

of memory-intensive benchmarks in each workload is varied

7.3. Analysis of ATLAS

Effect of Coordination in ATLAS Figure 9 compares the perfor-
mance of an uncoordinated version of ATLAS where each controller
performs local LAS-based thread ranking based on local attained ser-
vice values of each thread to the performance of (coordinated) AT-
LAS for 32 workloads on the baseline system. The results show
that coordination provides 1.2%/0.8% instruction/system throughput
improvement in ATLAS, suggesting that it is beneficial to have a
LAS-based ranking that is consistent across controllers. However,

we note that the uncoordinated version of ATLAS still provides re-
spectively 7.5% and 4.5% higher performance than uncoordinated
PAR-BS and ideally coordinated PAR-BSc. If the hardware overhead
required for coordination is not desirable in a system, ATLAS can
be implemented in each controller independently, which still yields
significant system performance improvements over previous mecha-
nisms.

ATLAS does not benefit from coordination as much as PAR-BS
does because ATLAS uses a very long time quantum (10M cycles)
compared to PAR-BS’s short batches (∼2K cycles). A long time
quantum balances the fluctuation of load (and hence attained service)
across different MCs and therefore the MCs are more likely than in
PAR-BS to independently form a similar ranking of threads without
coordinating. On the other hand, short batches in PAR-BS are vul-
nerable to short-term load imbalance of threads across multiple MCs:
because threads’ accesses to memory are bursty, one MC might have
higher load for one thread while another has low load, leading to very
different rankings without coordination. We conclude that long-time
quanta reduce the need for coordination in ATLAS, but ATLAS still
benefits from coordination.

ATLAS is a scheduling algorithm specifically designed to oper-
ate with minimal coordination among multiple memory controllers.
Therefore, it is unsurprising that ATLAS shows a reduced benefit
from coordination. This should not be used as a basis to discredit
coordination for scheduling algorithms in general. Particularly, Fig-
ure 5 shows that an idealized coordinated version of PAR-BS pro-
vides 3.3%/3.0% gain in instruction/system throughput over uncoor-
dinated PAR-BS.

Effect of Coordination Overhead We varied the time it takes
to perform coordination (as described in Rule 2) between the 4 con-
trollers in our baseline system from 100 to 10,000 cycles. We found
that the system performance changed only negligibly with coordina-
tion overhead. This is due to two reasons: 1) coordination latency is
negligible compared to the 10M-cycle quantum size, 2) the consis-
tent ranking in the previous interval continues to be used until coor-
dination completes.

Effect of Quantum Length Figure 10(a) shows the performance
of ATLAS as quantum size is varied from 1K to 25M cycles, as-
suming there is no coordination overhead among controllers. A
longer quantum has three advantages: 1) it reduces the coordination
overhead among controllers, 2) it increases the probability that large
memory episodes fit within a quantum, thereby enabling the prioriti-
zation of shorter episodes over longer ones, 3) it ensures thread rank-
ing stays stable for a long time, thereby taking into account long-term
memory-intensity behavior of threads in scheduling. On the other
hand, a short quantum can capture more fine-grained changes in the
phase behavior of workloads by more frequently changing the LAS-
based ranking. Results show that system performance increases with
quantum size because taking into account long-term thread behavior
provides more opportunity to improve system throughput, until the
quantum size becomes too large (25M cycles). Very small quantum
sizes lead to very low performance because thread ranking changes
too frequently, leading to degradations in both bank-level parallelism
and ability to exploit long-term thread behavior.

Effect of History Weight (α) A large α ensures attained service
values from prior quanta are retained longer and persistently affect
the ranking for future quanta, causing TotalAS to change very slowly
over time. Therefore, a large α allows ATLAS to better distinguish
memory-intensive threads since it does not easily forget that they
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Figure 9. Performance of ATLAS with and without coordination
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Figure 10. ATLAS performance with varied ATLAS parameters

have amassed large amounts of attained service in the past. On the
other hand, too large an α degrades the adaptivity of ATLAS to phase
behavior for the exact same reasons. Even when a thread transitions
into a memory-intensive phase and starts to accumulate significant
amounts of attained service, its ranking will still remain high for sub-
sequent quanta since its historical attained service is perceived to be
low.

Figure 10(b) shows that system performance increases as α in-
creases. In our benchmarks, we do not see degradation with very
large α values because we found that per-thread memory intensity
behavior stays relatively constant over long time periods. However,
using a too-high α value can make the memory scheduling algorithm
vulnerable to performance attacks by malicious programs that inten-
tionally deny service to others by exploiting the fact that the algo-
rithm is not adaptive and unfairly favors threads that have been mem-
ory non-intensive in the past. To prevent this, we choose α = 0.875
which balances long-term attained service and the last quantum’s at-
tained service in our evaluations.

Effect of Starvation Threshold (T ) Figure 10(c) shows system
performance as the starvation threshold is varied from one thousand
to infinite cycles. When T is too low, system performance degrades
significantly because scheduling becomes similar to first-come-first-
serve since many requests are forced to be serviced due to threshold
violations and therefore the advantages of LAS-based ranking or-
der is lost. When T becomes too large, the strict starvation-freedom
guarantee is lost, but system performance stays very similar to our
default threshold, T = 100, 000. This is because LAS-based rank-
ing by itself provides a way of reducing starvation because starved
threads become highly-ranked since their attained service is smaller.
However, we still use a starvation threshold, which can be configured
by system software, to strictly guarantee non-starvation.

7.4. Effect of ATLAS on Fairness

We evaluate the fairness of ATLAS using two separate metrics:
maximum slowdown and harmonic speedup [13]. The maximum
slowdown of a workload is defined as the maximum of the inverse-
speedups (i.e., slowdowns) of all comprising threads. For two al-
gorithms that provide similar performance, the one that leads to
a smaller maximum slowdown is more desirable. The harmonic
speedup of a workload is defined as the harmonic mean of speedups
of all comprising threads (higher harmonic-speedup correlates with
higher fairness in providing speedup [29]). Figures 11 and 12 show
that maximum slowdown increases by 20.3% and harmonic speedup
decreases by 10.5%.

It is important to note that ATLAS is unfair to memory-intensive
threads that are likely to be less affected by additional delay than non-
intensive ones. While memory-intensive threads suffer with regard
to fairness, overall system throughput increases significantly. For
threads that require fairness guarantees, system software can ensure

fairness by appropriately configuring the thread weights that ATLAS
supports (Section 3.2).
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Figure 12. Harmonic speedup of ATLAS vs. others on 24-core 4-MC system

7.5. Sensitivity to System Parameters

Effect of Memory Address Mapping All results presented so
far assume a cache-block-interleaved memory addressing scheme,
where logically consecutive cache blocks are mapped to consecutive
MCs. Although this addressing scheme is less likely to exploit row-
buffer locality, it takes advantage of the higher memory bandwidth
by maximizing bank-level parallelism. As a comparison, Figure 5
shows performance averaged over 32 workloads when rows (2 KB
chunks), instead of blocks (64-byte chunks), are interleaved across
MCs, thereby trading off bank-level parallelism in favor of row-
buffer locality. Two conclusions are in order: 1) block-interleaving
and row-interleaving perform very similarly in our benchmark set
with PAR-BS, 2) ATLAS provides 3.5% performance improvement
over PAR-BS, when row-interleaving is used, versus 8.4% when
block-interleaving is used. ATLAS’s performance benefit is higher
with block-interleaving than with row-interleaving because ATLAS
is able to exploit the higher bank-level parallelism provided by in-
terleaved blocks better than PAR-BS for each thread due to the long
quantum sizes. Since bank-level parallelism of each thread is low to
begin with when row-interleaving is used, the potential for ATLAS to
exploit bank-level parallelism for each thread is lower. We conclude
that ATLAS is beneficial regardless of the memory address mapping
scheme.
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Figure 14. Evaluation of ATLAS vs. PAR-BS and STFM with different thread weights

L2 Cache Size tCL

512 KB 1 MB 2 MB 4 MB 5ns 7.5ns 15ns 22.5ns 30ns

System Throughput Improvement over PAR-BS 8.4% 7.1% 6.0% 6.4% 4.4% 5.9% 8.4% 8.8% 10.2%

Table 5. Sensitivity of system performance of ATLAS to L2 cache size and main memory latency

Effect of Cache Size and Memory Latency Table 5 shows sys-
tem performance improvement of ATLAS compared to PAR-BS as
cache size and memory latency of the baseline system are indepen-
dently varied. Results show that ATLAS significantly improves per-
formance over a wide variety of cache sizes and memory latencies.

7.6. Evaluation of System Software Support

We evaluate how effectively ATLAS can enforce system-level
thread weights to provide differentiated services. We run 24 copies
of the lbm benchmark on our baseline 24-core 4-MC system, where
there are six thread-weight classes each with 4 lbm copies. The pri-
ority classes respectively have weights 1, 2, 3, 4, 5, 6. Figure 14
shows the speedup experienced by each of the 24 lbm copies com-
pared to when it is run alone. Since FCFS (not shown) and FR-
FCFS are thread-unaware, they are unable to differentiate between
lbm copies. With STFM, weights are not fully enforced–the weight is
correlated with thread’s speedup, but the relationship between weight
and speedup is sub-linear. In fact, STFM has difficulty distinguishing
between weights 4, 5, and 6 because controllers are not coordinated;
a thread with higher weight can be better prioritized in one controller
than in another. Both uncoordinated and idealized coordinated PAR-
BS are able to enforce weights, but the relationship between weight
and speedup is exponential. ATLAS provides a linear relationship
between thread weight and speedup, which makes it easier to de-
sign system software algorithms because system software can reason
about the speedup of a thread based on the weight it assigns to the
thread.

8. Other Related Work

Memory Scheduling We have already qualitatively and/or quan-
titatively compared ATLAS to major previous scheduling algorithms
(FCFS, FR-FCFS [59, 46, 45], FQM [38, 41], STFM [35], PAR-
BS [36]) and shown that ATLAS provides significant performance
and scalability benefits over them. Other scheduling algorithms [17,
55, 30, 56, 18, 37, 58, 50, 22] have been proposed to improve DRAM
throughput in single-threaded, multi-threaded, or streaming systems.
None of these works consider the existence of multiple competing
threads sharing the memory controllers (as happens in a multi-core
system).

Other Work on Memory Controllers Abts et al. [1] examined
the placement of MCs in the on-chip network to improve perfor-
mance predictability. Lee et al. [27] proposed adaptive prioritization
policies between prefetches and demands in the memory controller
for efficient bandwidth utilization. Several previous works [14, 43,
53, 57] examined different physical-to-bank address mapping mech-
anisms to improve performance obtained from the memory system.
Other works [6, 37, 7, 8, 26, 12, 19, 3] have examined different mem-
ory controller design choices, such as row buffer open/closed policies
and power management techniques. All of these mechanisms are or-
thogonal to memory scheduling and can be applied in conjunction
with ATLAS.

9. Conclusions

We introduced ATLAS, a fundamentally new approach to de-
signing a high-performance memory scheduling algorithm for chip-
multiprocessor (CMP) systems that is scalable to a very large number
of memory controllers. Previous memory scheduling algorithms ei-
ther provide low CMP system throughput and/or are designed for a
single memory controller and do not scale well to multiple memory
controllers, requiring significant fine-grained coordination among
controllers, as we demonstrate in this paper. ATLAS tracks long-
term memory intensity of threads and uses this information to make
thread prioritization decisions at coarse-grained intervals, thereby
reducing the need for frequent coordination. To maximize sys-
tem throughput, ATLAS leverages the idea of least-attained-service
(LAS) based scheduling from queueing theory to prioritize between
different threads sharing the main memory system. We analyze the
characteristics of a large number of workloads in terms of memory
access behavior, and, based on this analysis, provide a theoretical
basis for why LAS scheduling improves system throughput within
the context of memory request scheduling. To our knowledge, AT-
LAS is the first memory scheduling algorithm that provides very high
system throughput while requiring very little or no coordination be-
tween memory controllers.

Our extensive evaluations across a very wide variety of workloads
and system configurations show that ATLAS provides the highest
system throughput compared to five previous memory scheduling
algorithms on systems with both single and multiple memory con-
trollers. ATLAS’s performance benefit over the best previous con-
trollers is robust across 4 to 32-core systems with 1 to 16 memory
controllers. ATLAS’s performance benefit increases as the number
of cores increases. We conclude that ATLAS can be a flexible, scal-
able, and high-performance memory scheduling substrate for multi-
core systems.
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Navarra. Increasing the number of strides for conflict-free vector access.

In ISCA-19, 1992.

[54] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,

M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal. On-chip inter-

connection architecture of the tile processor. IEEE Micro, 27(5):15–31,

2007.

[55] C. Zhang and S. A. McKee. Hardware-only stream prefetching and dy-

namic access ordering. In ICS, 2000.

[56] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B. Carter,

W. C. Hsieh, and S. A. McKee. The impulse memory controller. IEEE

TC, 50(11):1117–1132, Nov. 2001.

[57] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page interleav-

ing scheme to reduce row-buffer conflicts and exploit data locality. In

MICRO-33, 2000.

[58] Z. Zhu and Z. Zhang. A performance comparison of DRAM memory

system optimizations for SMT processors. In HPCA-11, 2005.

[59] W. K. Zuravleff and T. Robinson. Controller for a synchronous DRAM

that maximizes throughput by allowing memory requests and com-

mands to be issued out of order. U.S. Patent Number 5,630,096, May

1997.


