
The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study

Samira Khan†? Donghyuk Lee† Yoongu Kim†
samirakhan@cmu.edu donghyuk1@cmu.edu yoongukim@cmu.edu

Alaa R. Alameldeen? Chris Wilkerson? Onur Mutlu†
alaa.r.alameldeen@intel.com chris.wilkerson@intel.com onur@cmu.edu

†Carnegie Mellon University ?Intel Labs

ABSTRACT
As DRAM cells continue to shrink, they become more susceptible
to retention failures. DRAM cells that permanently exhibit short
retention times are fairly easy to identify and repair through the
use of memory tests and row and column redundancy. However,
the retention time of many cells may vary over time due to a prop-
erty called Variable Retention Time (VRT). Since these cells inter-
mittently transition between failing and non-failing states, they are
particularly difficult to identify through memory tests alone. In ad-
dition, the high temperature packaging process may aggravate this
problem as the susceptibility of cells to VRT increases after the as-
sembly of DRAM chips. A promising alternative to manufacture-
time testing is to detect and mitigate retention failures after the sys-
tem has become operational. Such a system would require mecha-
nisms to detect and mitigate retention failures in the field, but would
be responsive to retention failures introduced after system assembly
and could dramatically reduce the cost of testing, enabling much
longer tests than are practical with manufacturer testing equipment.

In this paper, we analyze the efficacy of three common error mit-
igation techniques (memory tests, guardbands, and error correcting
codes (ECC)) in real DRAM chips exhibiting both intermittent and
permanent retention failures. Our analysis allows us to quantify the
efficacy of recent system-level error mitigation mechanisms that
build upon these techniques. We revisit prior works in the context
of the experimental data we present, showing that our measured re-
sults significantly impact these works’ conclusions. We find that
mitigation techniques that rely on run-time testing alone [38, 27,
50, 26] are unable to ensure reliable operation even after many
months of testing. Techniques that incorporate ECC [4, 52], how-
ever, can ensure reliable DRAM operation after only a few hours of
testing. For example, VS-ECC [4], which couples testing with vari-
able strength codes to allocate the strongest codes to the most error-
prone memory regions, can ensure reliable operation for 10 years
after only 19 minutes of testing. We conclude that the viability of
these mitigation techniques depend on efficient online profiling of
DRAM performed without disrupting system operation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMETRICS’14, June 16–20, 2014, Austin, Texas, USA.
Copyright 2014 ACM 978-1-4503-2789-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2591971.2592000.

Categories and Subject Descriptors
B.3.1 [Memory Structure]: Semiconductor Memories—Dynamic
memory (DRAM); B.3.4 [Memory Structure]: Reliability, Testing,
and Fault-Tolerance

Keywords
DRAM, retention failures, system-level detection and mitigation,
error correction, ECC, fault tolerance, memory scaling

1. INTRODUCTION
The increasing number of cores and extensive use of data-

intensive applications demand high capacity main memories. Scal-
ing of DRAM to smaller technology nodes enabled higher capacity
in the same die area for the past few decades. However, as DRAM
cells scale down in size, they become significantly less reliable.
Ensuring reliability with technology scaling is a key challenge for
DRAM [36, 31, 18, 34].

A DRAM cell cannot retain its data permanently as the capacitor
used to store the data leaks its charge gradually over time. The
time a cell can retain its data is called the retention time of the cell.
In order to maintain correct data in DRAM, cells are periodically
refreshed every 64 ms. A cell that cannot retain its data for 64
ms results in a failure, referred to as retention failure.1 In order
to avoid retention failures, the worst-case retention time of cells
must be no less than 64 ms. However, several technology trends
make this requirement increasingly difficult to efficiently satisfy.
On the one hand, as cell dimensions shrink, cells become more
susceptible to retention failures (or, reducing retention times) [10,
13, 11, 54], motivating higher refresh rates. On the other hand,
increasing DRAM chip capacity makes even the current nominal
refresh rate untenable in future technology DRAMs. For example,
one study showed that a 32 Gb DRAM chip will spend 35% of the
memory power and 25% of the available DRAM chip bandwidth on
refreshes [27]. Another study showed that the performance penalty
of refresh in a system with 32 Gb DRAM chips can be 20% [6]. A
higher refresh rate will result in a significant throughput loss, power
overhead, and performance loss [27, 6, 37].

Currently, DRAM vendors guarantee worst-case retention time
of 64 ms by detecting and mitigating cells having retention time
less than 64 ms during manufacturing time. However, detection
of retention failures is extremely challenging as the same cell can
fail or operate correctly at different times. These retention fail-
ures are defined as intermittent retention failures in DRAM cells.
1 We assume each failure can potentially cause an error and use
failure and error interchangeably in the rest of the paper.

519

There are two sources of intermittent retention failures in DRAM:
1) Data pattern sensitivity: A DRAM cell can fail depending on
the data stored in the neighboring cells [23, 28], and 2) Variable
retention time (VRT): A cell can transition among different reten-
tion times at different points in time and can fail when it moves
to a retention time less than the current refresh interval [41, 55,
33, 28]. Due to these intermittent retention failures, manufacturers
perform exhaustive testing to detect and mitigate these failures. A
recent work showed that it can take days to test a chip to identify
all intermittent retention failures [28]. In fact, one of the major
DRAM vendors confirmed that detection of such failures leads to
some of the most expensive tests during manufacturing time. As
retention failures become more prominent with technology scal-
ing [10, 13, 11, 54, 28], the manufacturing-time retention failure
tests will become longer, making it more difficult and more costly
for the DRAM manufacturers to scale the density of DRAM chips
as aggressively as was done in the past. More importantly, some
of the DRAM cells start exhibiting VRT characteristics as they are
exposed to high temperature during the packaging of the DRAM
chips [44, 21, 28], so pre-packaging tests cannot always screen all
VRT failures.

Instead of DRAM manufacturers providing retention-error-free
DRAM chips after exhaustive and expensive manufacturing-time
tests, an alternative approach is detecting and mitigating retention
failures of DRAM cells in the field, during the operation of DRAM
in the system. We refer to system-level error detection as online
profiling. In this case, the memory controller would be responsible
for detecting and mitigating the retention failures while the system
is running. An online profiling mechanism has three significant ad-
vantages over traditional manufacturing time testing. First, such
a system can reduce manufacturing cost and increase yield by en-
abling the manufacturers to ship DRAM chips without fully ensur-
ing that all cells operate correctly at a minimum specified retention
time. Second, online testing is capable of tolerating the new in-
termittent failures induced by the high temperature packaging pro-
cess. Third, an online profiling system is more suitable compared
to manufacturing tests to detect the intermittent retention failures
that takes hours/days of testing, as it can amortize the cost of pro-
filing by performing online tests in the background spread across a
very large time interval (days/months).

System-level detection and mitigation of intermittent retention
failures seems to be a promising direction into the future. How-
ever, there is no prior work that assesses the efficacy of differ-
ent mitigation techniques in the presence of intermittent failures.
Some recent works proposed error mitigation techniques that rely
on system-level testing, but assume there are no intermittent fail-
ures. These mechanisms perform a simple test at system boot-up to
detect the failing cells and cannot tolerate any new failures after the
initial testing [38, 27, 50, 26]. If error mitigation techniques do not
consider intermittent failures, data loss can occur due to potentially
inaccurate identification of failing cells.

Our goal is to analyze the efficacy of existing error mitigation
techniques in the system in the presence of intermittent retention
failures to enable the development of more efficient and effec-
tive detection and mitigation techniques. We use an FPGA-based
DRAM testing infrastructure to test 96 DRAM chips from three
different manufacturers to analyze the effectiveness of system-level
testing, guardbanding, and ECC for intermittent retention failures.
We use our analysis to quantify the effectiveness of recently pro-
posed architectural error mitigation techniques [38, 27, 50, 4, 52,
26] in the presence of intermittent failures.

To our knowledge, this paper presents the first work that quan-
tifies system-level detection and mitigation techniques in the pres-

ence of intermittent failures. Our major contributions are:
• We analyze the effectiveness of testing in discovering retention

failures. We show that only a small amount of testing can dis-
cover the majority of failing cells. We quantify testing using
the metric rounds, where a round consists of writing the en-
tire module, waiting for some specific time to make sure all the
cells have been idle for the refresh interval and reading back the
data again to locate the failing cells. From our experiments, we
show that only 5 rounds of tests can discover most of the inter-
mittent failures and reduce the probability of discovering a new
failure by 100 times. However, even after thousands of rounds
of testing, we find that a very small number of cells exhibit new
failures not discovered before, which indicates that testing is
not enough by itself to mitigate all retention failures.

• We present the efficacy of using a guardband to avoid intermit-
tent retention failures. Adding a guardband X on the refresh
interval of 64 ms means that all DRAM chips that are detected
to have cell failures at X times 64 ms (i.e., 64X ms) refresh
interval are discarded by the manufacturer [51, 2]. If VRT cells
exhibit retention times less than the applied guardband, these
cells will fail and get detected at 64X ms, making the guard-
band 100% effective. We show that a small amount of guard-
band (e.g., 2X) can avoid 85-95% of the intermittently failing
cells and reduce the probability of a new retention failure by
10 times. However, even a large guardband (e.g., 5X) is not
effective for the remaining VRT cells, indicating that using a
guardband alone is not effective to mitigate all failures.

• We show the efficacy of error correction codes (ECC) in the
presence of other error mitigation techniques. We find that a
combination of error mitigation techniques is much more ef-
fective in tolerating a high number of retention errors than us-
ing only ECC. An uncorrectable retention error in the presence
of ECC results in a failure. Using only single error correction
codes can reduce the probability of retention failure by only
100 times, but using single error correction codes together with
testing and guardbanding can reduce the probability of failure
by as much as 1012 times.

• We revisit prior works [38, 27, 50, 4, 52, 26] in the context of
the experimental data and analysis, showing that our measured
results significantly impact these works’ conclusions. We show
that bit repair mechanisms that rely on testing cannot provide
strong reliability guarantees even after performing system-level
testing for months. However, ECC-based mitigation techniques
can be effective at ensuring reliable DRAM operation with on-
line testing in the presence of intermittent failures after just a
few hours of testing. We conclude that the viability of these
techniques depend on efficient continuous online profiling per-
formed periodically at a longer interval without disrupting sys-
tem operation.

Based on our experimental evaluation, we discuss a possible on-
line profiling system to detect and mitigate intermittent retention
failures. We hope that our findings will be useful in developing
new low-cost architectural techniques to mitigate DRAM retention
failures, thereby enabling better scaling of DRAM into future tech-
nology generations.

2. BACKGROUND AND RELATED WORK
In this section, we briefly provide background information nec-

essary to understand our technical contributions. Interested readers
can find more details on DRAM in [22, 20].

520

Core

C
h

ip

C
h

ip

C
h

ip

C
h

ip

Rank

Mem

Module

Controller

Channel

Figure 1: DRAM Organization

Wordline

B
itlin

e

2D Cell Array Cell

Figure 2: DRAM Cells in a Bank

2.1 DRAM Basics
Figure 1 shows the high level DRAM organization. DRAM is

hierarchically organized as channels, modules, ranks, and chips.
Each channel consists of multiple modules. On every module there
can be more than one rank that consists of multiple DRAM chips.
For example, a typical 2 GB module with 64-wide data bus can
have one rank with 8 chips. Each chip can have 2 Gb capacity
with an 8-bit bus. All chips in a rank respond to the same DRAM
command. With this configuration, 8 chips can transfer 64 bits of
data in parallel. DRAM cells are organized as 2D arrays called
banks. Figure 2 shows the structure of a bank and a cell within the
bank. A cell consists of a capacitor and a transistor. The cells in
a row are connected through a wire (wordline) and the cells in a
column are connected to another wire (bitline). In order to access
the data stored in a cell, a high voltage is applied to the wordline of
the row containing the cell, which turns on the access transistor and
connects the capacitor to the bitline. When the access transistor is
on, charge can flow to/from the capacitor through the bitline and
data can be accessed.

Charge stored in the capacitor leaks over time. The time a cell
can retain its data is called the retention time of the cell. To retain
the data in the cell, DRAM cells have to be periodically refreshed.
The DDR3 specification guarantees the lowest retention time of 64
ms [15], which means that each row in DRAM is refreshed every
64 ms to maintain the data in the cells.

2.2 Retention Failures
DRAM cells that cannot hold data for 64 ms cause retention fail-

ures. Retention time is a key constraint to enabling high density
DRAM. As the cell size shrinks with technology scaling, the man-
ufacturers are facing increasing challenges to fabricate a low leak-
age cell with adequate capacitance to retain the data for 64 ms [31,
18, 34]. DRAM yield is limited by a small fraction of leaky cells
whose retention time is significantly lower than other cells [19, 11].
Detecting retention failures (i.e., cells that cannot maintain data as
long as the minimum specified retention time) requires exhaustive
testing as these failures can occur intermittently. Next, we provide
two prevalent characteristics of the retention failures.

2.2.1 Data Pattern Sensitivity
The retention time of a cell is strongly dependent on the charge

stored in that cell, as well as in the neighboring cells, a phenomenon

referred to as data pattern sensitivity [23, 28]. A data pattern sen-
sitive retention failure is hard to detect as each cell in the DRAM
chip has to be exhaustively tested with different kinds of patterns
stored in the cell itself as well as the neighboring cells.

2.2.2 Variable Retention Time
The retention time of a cell also depends on the current state of

the cell. Some DRAM cells can randomly transition between dif-
ferent retention states. These cells are said to demonstrate variable
retention time (VRT) [41, 55, 33, 28] and are called VRT cells. De-
pending on the current retention time, a cell may or may not fail
at that particular time. In order to guarantee that all cells have re-
tention time greater than 64 ms, every VRT cell with a potential
retention time less than 64 ms must get discovered during testing.
Manufacturing tests can detect VRT cells if they are actually in the
failing retention state during the tests. Unfortunately, the existence
of VRT cells cause two major challenges in deploying retention-
failure-free DRAM chips in the field. First, discovering whether
or not VRT cells have a failing retention state may require pro-
hibitively long tests, as some of the cells can spend a long time in
the high retention state before moving to a low retention state [28,
17, 55]. Second, thermal stress during packaging of DRAM chips
induces new VRT cells [44, 21]. As such, tests done by DRAM
manufacturers before packaging cannot discover these failures.

2.3 Mitigating Retention Failures
2.3.1 Testing

Conventional DRAM retention tests verify that all cells retain
their charge for the specified refresh interval (64 ms). The phenom-
ena of data pattern sensitivity and variable retention states make re-
tention testing a challenging problem. Several test algorithms with
different patterns need to be applied to achieve a reasonable fault
coverage for pattern sensitivity. On the other hand, VRT cells are
hard to detect even with very long tests. Previous works have de-
scribed the effectiveness of different test patterns and algorithms
for manufacturing-time testing [49, 28, 3]. However, no previous
work shows the efficacy of testing for retention failures at the sys-
tem level in the presence of both pattern sensitivity and VRT cells.

2.3.2 Guardbanding
A guardband on the refresh interval is defined as adding an extra

margin (X) on the refresh interval of 64 ms such that all cells have
a retention time greater than X times 64 ms (i.e., 64Xms) [51,
2]. The process of guardbanding (adding a guardband X) consists
of three steps. First, a screening test is run at a higher refresh in-
terval (64X ms) to detect all the cells with retention time less than
64X ms. This includes VRT cells with retention times less than the
added guardband. Second, either all the failing bits that are found
during the screening test get repaired through some repair mecha-
nism, such as row and column sparing, or the chip exhibiting the bit
failures gets discarded, making sure that the chips passing the tests
will operate correctly at 64 ms. Finally, the original refresh interval
of 64 ms is reintroduced. Ideally, with a large enough guardband,
one would hope that all causes of potential intermittent retention
failures can be avoided at manufacturing time. However, there are
two disadvantages of using a large guardband. First, a large number
of chips would get discarded since the number of retention failures
increases exponentially as refresh interval increases [28, 11, 14],
resulting in a significant yield loss. Second, a guardband applied
during manufacturing time may not be enough to avoid the new
VRT failures induced during the packaging process. To our knowl-
edge, no prior work shows the effectiveness of guardbanding for
retention failures in the presence of VRT cells.

521

(a) (b) (c)

Figure 3: Testing Infrastructure: (a) ML605 Board (b) Temperature Controller and Heat Chamber, and (c) Inside of the Heat Chamber

2.3.3 Error Correction Codes
Error correction codes and parity are used to repair faulty bits us-

ing redundant information. Prior works proposed to use ECC to tol-
erate retention errors [8, 52]. There are some studies on the bit error
rate (number of bit errors divided by the total number of bits during
a specific time interval) of industrial DIMMs in the field [43, 24,
46, 45]. However, no prior work provided an experimental study
and analysis of the retention error rate reduction with ECC in pres-
ence of other error mitigation techniques for intermittent retention
failures.

2.3.4 Recent Error Mitigation Techniques
Recent system-level error detection and mitigation techniques

can be divided into two categories:
1. Bit Repair Mechanisms: These mechanisms rely on tests

at system boot time to locate failing bits and then use differ-
ent repair mechanisms to repair those faulty bits. For example,
ArchShield [38] remaps the faulty bits in a specified region of
memory. RAIDR [27] uses higher refresh rates for rows containing
weak cells to avoid retention failures. RAPID [50] uses software
remapping to disable pages with potential retention failures. SE-
CRET [26] applies error correcting pointers [42] only to the faulty
bits found during the initial testing. However, all these works as-
sume that a simple initial test can detect all the failures and do not
consider the intermittent failures caused by data pattern sensitivity
and VRT.

2. ECC-Based Mitigation Techniques: These mechanisms rely
on strong ECC and apply such codes in ways to minimize the over-
all cost of ECC. We discuss two examples. VS-ECC [4] is an ECC-
based mitigation mechanism that uses online testing to determine
the needed ECC strength for different cache lines. Any cache line
with one or more potential errors is protected by a strong ECC, a
4-bit correcting, 5-bit detecting code (4EC5ED). All other lines are
protected using simple single error correcting, double error detect-
ing (SECDED) codes, which reduces the overall cost of ECC by
applying strong codes to only those lines that need strong codes.
However, VS-ECC does not consider intermittent failures and as
a result can fail in the presence of a 2-bit failure in lines protected
only by SECDED code. Hi-ECC [52] proposes to amortize the cost
of strong ECC by protecting data at a coarse granularity (1KB in-
stead of 64B). This mechanism can potentially tolerate intermittent
failures with the strong ECC code applied uniformly. However,
it has a significant bandwidth and performance overhead, as the
memory controller reads the entire 1KB data chunk (as opposed to
the much smaller 64B cache line) upon each access to verify ECC.

2.4 Our Goal and Scope
Our goal in this work is to analyze the system-level efficacy of

existing mitigation techniques for retention failures using experi-
mental data from commodity DRAM chips. We evaluate recently
proposed mitigation techniques in the context of intermittent reten-
tion failures. We do not take into consideration the effect of other
functional failure mechanisms (e.g., stuck-at faults, decoder faults,
etc. [48, 1, 39]) as these mechanisms lead to consistent and repeat-
able failures which can be detected relatively easily during manu-
facturing tests. We also do not consider alpha particle or cosmic
ray induced soft failures [40, 32] as previous works have already
provided strong analyses for these [5, 12, 47, 35], which can be
used in conjunction with the findings of our paper.

3. TESTING INFRASTRUCTURE
To study the efficacy of system-level detection and mitigation

techniques for intermittent retention failures, we would like to ex-
perimentally analyze how retention time of cells change at different
times with different data patterns. To do these studies, we have de-
vised an FPGA-based experimental infrastructure that consists of
Xilinx ML605 boards (Figure 3a) [53]. An ML605 board has a slot
for a small outline dual in-line memory module (SO-DIMM) and
integrates a DDR3 interface. The host PC communicates with the
boards through a PCI Express bus. We have customized the mem-
ory interface such that the refresh interval can be changed from
the specific software in the host PC. DRAM manufacturers ensure
that there are no failures at the nominal refresh interval of 64 ms
by discarding or repairing chips with failures during manufacturing
tests. As a result, DRAM chips in the field do not exhibit any re-
tention failures at the refresh interval of 64 ms. In order to expose
the retention failures in commodity DRAM chips, we increase the
refresh interval in our experiments. A higher refresh interval re-
sults in a higher number of retention failures in the system. This
allows us to emulate future generation DIMMs with chips not fully
tested for retention failures where many cells can actually fail at
the nominal refresh interval. We analyze the efficacy of detection
and mitigation techniques for retention failures at different refresh
intervals, and show that our experimental observations on the inter-
mittent failures hold, irrespective of the refresh interval.

Prior works have demonstrated that the retention time of DRAM
cells decreases exponentially as temperature increases [11, 28].
In order to isolate the effect of temperature on retention failures,
we perform temperature controlled experiments in a heat chamber
(Figure 3b and 3c). Manufacturing-time retention tests are usually
performed at a temperature of 85 ◦C. However, any system-level
detection and mitigation technique will be deployed at run-time,

522

0 2 4 6 8 10 12 14 16 18 20

Refresh Interval (in seconds)

5

10

15

20

N
u

m
b

er
 o

f
F

a
il

in
g
 C

el
ls

 (
in

 m
il

li
o
n

s)

A

A

A

A

B

B

B

B

C

C

C

C

1

2

3

4

1

2

3

4

1

2

3

4

Figure 4: Number of Failures at Different Refresh Intervals

where the operating conditions would not reach such high tempera-
tures most of the time (e.g., the system might stop being operational
at around 60 ◦C as hard-disks, for example, can have a thermal rat-
ing less than 60 ◦C). Our experiments are done at 45 ◦C to analyze
the retention behavior in a typical system operating in the field.

Our results can be compared to prior work on retention time dis-
tribution at 85 ◦C, by scaling the refresh intervals used in our ex-
periments to account for the change in temperature. Prior works
showed that a 10 ◦C increase in temperature approximately halves
the refresh interval [11, 28]. Based on experiments in our infras-
tructure, increasing the temperature by 10 ◦C reduces the refresh
interval by 46.5% (Refer to the Appendix for details) [28]. We
analyze retention failures with refresh intervals 1 second to 20 sec-
onds at 45 ◦C, which correspond to 82 ms to 1640 ms at 85 ◦C.

We have tested twelve modules containing 96 chips from three
major DRAM manufacturers. The capacity of each module is 2
GB. All the modules have a single rank and eight 2 Gb chips in the
rank. The assembly dates of the modules are listed in Table 1.

Manufacturer
Module
Name

Assembly Date
(Year-Week)

Number of
Chips

A A1 2013-18 8

A A2 2012-26 8

A A3 2013-18 8

A A4 2014-08 8

B B1 2012-37 8

B B2 2012-37 8

B B3 2012-41 8

B B4 2012-20 8

C C1 2012-29 8

C C2 2012-29 8

C C3 2013-22 8

C C4 2012-29 8

Table 1: Tested DRAM Modules

We perform a simple test to validate our infrastructure. Figure 4
shows the number of failing cells in each module at various refresh
intervals of 1 to 20 seconds with an increment of 1 second at 45 ◦C
(which corresponds to various refresh intervals between 82 ms to
1640 ms with 82 ms increment at 85 ◦C). At each interval, we write
all ones to the entire module and then change the refresh interval.
We wait for some specific amount of time to make sure that all
the rows in the DIMM have been refreshed according to the new
interval. Then we read out the entire DIMM and determine the
number of cells that do not contain the original value written to
them (i.e., failing cells). Then we repeat the experiment with all

0 100 200 300 400 500 600 700 800 900 1000

Number of Rounds

0

50000

100000

150000

200000

N
u

m
b

er
 o

f
F

a
il

in
g
 C

el
ls

 F
o

u
n

d ZERO ONE TEN FIVE RAND All

Figure 5: Number of Failures with Testing in Module A1

zeros to get the total number of failing cells at that refresh interval.
Figure 4 presents the number of failing cells for all the modules.
The number of retention failures increases exponentially with the
refresh interval, as reported in the prior works [28, 11, 14]. We also
performed other tests validating the failure rate with different data
patterns in modules manufactured by different vendors and found
that the results are consistent with previous works [28, 14, 45]. As
our results are consistent with prior works, we conclude that our
apparatus and methodology are sound.

4. EFFICACY OF TESTING
In this section, we analyze the adequacy of testing in detecting

retention failures. We perform experiments to answer these ques-
tions: 1) How many rounds of testing are required for detecting the
VRT failures? 2) How does the probability of finding a new failure
reduce with rounds of testing? 3) How long does a VRT cell stay
in different retention states?

4.1 Detecting Retention Failures with Testing

4.1.1 Description of the Experiment
In this experiment, we test the modules at a refresh interval of 5

s for 1000 rounds at 45 ◦C (410 ms at 85 ◦C). The intent of the
experiment is to study the effectiveness of testing in the context of
a high number of retention failures to emulate future modules with
chips not fully tested for retention failures, where many cells can
actually fail at the nominal refresh rate. We found that a refresh
interval of 5 seconds yields a retention failure rate of 10−6, which
provides insights into the behavior of intermittent failures with a
relatively higher failure rate. We also provide results at other re-
fresh intervals to show that the observations hold irrespective of
the refresh interval deployed in the system.

We run experiments with different data patterns (zeroes
(0b0000), ones (0b1111), tens (0b1010), fives (0b0101), and ran-
dom) written to the entire DRAM for 1000 rounds. In the experi-
ment with the random patterns, we write a randomly generated data
pattern at each round. Thus, in tests with random data patterns, the
pattern changes in each round. For all other tests, the data pattern
(ones, zeroes, tens, and fives) remains the same across rounds. We
also perform an experiment where all patterns are tested in each
round (denoted as "All" in graphs). We count the number of failing
cells discovered so far in each round. Our methodology of testing
with rounds is similar to that described in [28].

Figure 5 shows the number of failing cells found versus number
of rounds used for testing for the module A1. We plot the num-
ber of failing cells for each of the patterns tested (ZERO, ONE,

523

0 100 200 300 400 500 600 700 800 900 1000

Number of Rounds

1E-03

1E-06

1E-09

1E-12P
ro

b
a
b

il
it

y
 o

f
N

ew
 B

it
 F

a
il

u
re

ZERO ONE TEN FIVE RAND All

(a) Module A1

0 100 200 300 400 500 600 700 800 900 1000

Number of Rounds

1E-03

1E-06

1E-09

1E-12P
ro

b
a
b

il
it

y
 o

f
N

ew
 B

it
 F

a
il

u
re

ZERO ONE TEN FIVE RAND All

(b) Module B1

0 100 200 300 400 500 600 700 800 900 1000

Number of Rounds

1E-03

1E-06

1E-09

1E-12P
ro

b
a
b

il
it

y
 o

f
N

ew
 B

it
 F

a
il

u
re

ZERO ONE TEN FIVE RAND All

(c) Module C1

Figure 6: Probability of Discovering New Errors with Testing

0 100 200 300 400 500 600 700 800 900 1000

Number of Rounds

1

10

100

1000

10000

100000

R
ed

u
ct

io
n

 i
n

 N
ew

 F
a

il
u

re
 R

a
te

Figure 7: Reduction in Failure Rate in All Tested Modules

TEN, FIVE, RAND, All). We observe that there is a common trend
among all the patterns: There is a sharp increase in the number of
new failing cells within the first few rounds, but then the curves
become relatively flat. This implies that the first few rounds of
tests discover most of the intermittent failures and not too many
new cells are found to fail after the first few rounds. However, a
small number of new cells fail even after a considerable number of
rounds. We observe that other modules demonstrate very similar
behavior. Due to space constraints, we do not present all the results
for each of the modules, but present results for one module from
each vendor and a summary of the results over all the tested mod-
ules. However, detailed figures for all modules and data sets can be
found online at the SAFARI Research Group website [16].

Observation: Only a few rounds of tests can discover most of
the retention failures. However, even after thousands of rounds
of testing, a very small number of new cells are discovered to be
failing.

Implication: Significant retention failure rate reduction is pos-
sible with only a few rounds of tests, but testing alone cannot detect
all possible retention failures.

4.1.2 Reducing Retention Failure Rate with Testing
We have empirically observed that only a few rounds of tests

can detect most of the retention failures. This observation implies
that the probability of detecting a new failure reduces significantly
after only a few rounds of testing. We use the number of new fail-
ures detected at each round from Figure 5 and calculate the prob-
ability of discovering a new failure per round (using Equation (1)
in Appendix). Figure 6 presents the reduction in failure rate with

0 100 200 300 400 500 600 700 800 900 1000

Number of Rounds

1E-03

1E-06

1E-09

1E-12P
ro

b
a

b
il

it
y

 o
f

N
ew

 B
it

 F
a
il

u
re

2 s 4 s 5 s 10 s

Figure 8: Probability of Retention Failure at Different Refresh In-
tervals in Module A1

rounds of testing for one module from each vendor. This reduction
in failure rate with testing can enable the estimation of number of
required rounds of online testing to achieve a target reliability guar-
antee. A system-level profiling mechanism can observe the num-
ber of failures incurred at run-time and can determine the number
of testing rounds required to reduce the probability of discovering
a new failure to an acceptable limit. For example, Figure 5 shows
there are more than 170000 retention failures in module A1 with
all tested patterns (retention failure rate of 10−6). The system-level
profiling mechanism can be configured to perform 300 rounds of
testing (at which point there are around 18 new bit failures occur-
ring every round, as can be calculated from Figure 5), reducing the
retention failure rate to 10−9. The number of required rounds is
obtained by observing the point at which the curve for the proba-
bility of a new failure with all the tested patterns crosses 10−9 in
Figure 6a.

Figure 7 shows the average reduction in the probability of a new
failure versus the number of testing rounds for all the tested mod-
ules. Standard deviation of the reduction in failure rate is also plot-
ted (as error bars on data points). This figure shows that only 5
rounds of tests can reduce the new failure rate by more than 100
times, but the reduction in failure rate becomes greatly diminished
as the number of testing rounds increases beyond 100: each addi-
tional round finds a small number of retention failures. We also
present the probability of a new failure with testing at different re-
fresh intervals in Figure 8. This figure shows that the probability
of discovering a new failure with testing reduces at a similar rate
irrespective of the refresh interval.

524

0 200 400 600 800 1000

Failed in Number of Rounds

1

10

100

1000

10000
N

u
m

b
er

 o
f

F
a

il
in

g
 C

el
ls

(a) Module A1

0 200 400 600 800 1000

Failed in Number of Rounds

1

10

100

1000

10000

100000

1000000

N
u

m
b

er
 o

f

F
a

il
in

g
 C

el
ls

(b) Module B1

0 200 400 600 800 1000

Failed in Number of Rounds

1

10

100

1000

10000

100000

N
u

m
b

er
 o

f

F
a

il
in

g
 C

el
ls

(c) Module C1

Figure 9: Number of Cells Failing in Different Number of Rounds

Based on our experiments, we conclude that 1) although the ab-
solute number of retention failures varies across modules and re-
fresh intervals, only a few rounds of tests can reduce the probability
of a new failure significantly, 2) however, even after 1000 rounds
of testing there is a small number of new failures discovered every
round, and 3) the probability of discovering a new failure decreases
slowly after the initial rounds of testing. These results imply that
testing by itself, is not enough to detect and mitigate all the reten-
tion failures.

4.1.3 Retention Failure Coverage with Testing
Rounds

The efficacy of testing depends on the consistency of a particular
cell failing in different rounds of tests. We discuss three cases to
demonstrate how consistency of failure can affect the efficacy of
testing for a cell: 1) if a cell consistently fails in all rounds of tests,
it is likely a very weak cell, perhaps with a permanent retention
failure; these can be effectively discovered with testing, 2) if a cell
fails in a majority of rounds of tests, it is again likely that testing
will effectively discover it, 3) if a cell fails in only a few rounds
of tests, then it is less likely to be discovered with testing (at least
within a reasonable amount of time). We present the total number
of rounds a particular cell fails in our experiments to determine
how effective testing could be across all cells. Instead of showing
each unique cell, we group all cells that fail in the same number of
rounds. Figure 9 plots the number of cells that fail in a total of N
rounds, where N varies from 1 to 1000. The peak at 1000 rounds
suggests that the majority of the failing cells are very weak cells
that fail in every round. All the other cells are VRT cells that fail
only intermittently. The second highest peak around round 1 shows
that a significant number of cells fail only in one round, indicating
that it will likely be difficult to discover a significant portion of
intermittent failures through system-level testing. Figure 10 shows
the average, minimum and maximum number of cells failing in one
to 1000 rounds across all tested modules. Based on the similarity of
the curves, and the consistent existence of a large fraction of cells
that fail in only a small number of testing rounds, we conclude that
testing alone is likely ineffective at efficiently discovering a large
fraction of the intermittently failing cells.

4.2 Undetected Retention Failures
The previous experiment showed that a large fraction of inter-

mittently failing cells can remain undetected by testing as there are
some VRT cells that operate correctly (pass) for a long time and
then fail for a short period of time. Next, we analyze the time a
VRT cell spends in its different retention (time) states. The intent
of the experiment is to determine the percentage of VRT cells that
fail after spending a long time in the non-failing retention state, and
that are therefore are hard to detect through testing.

0 200 400 600 800 1000

Failed in Number of Rounds

1

10

100

1000

10000

100000

1000000

N
u

m
b

er
 o

f

F
a
il

in
g
 C

el
ls Max

Avg

Min

Figure 10: Average, Minimum and Maximum Number of Cells
Failing in Different Number of Rounds

0 20 40 60 80 100

Avg Hold Time of Minimum

Retention State (in rounds)

0

20

40

60

80

100

A
v

g
 H

o
ld

 T
im

e
o

f
M

a
x
im

u
m

R
et

en
ti

o
n

 S
ta

te
 (

in
 r

o
u

n
d

s)

1-1000
1001-2000
2001-3000
3001-4000
4001-5000
5001-6000
6001-7000
7001-8000
8001-9000
9001-10000
10001-higher

Bounded Cells

0 20 40 60 80 100

Avg Hold Time of Minimum

Retention State (in rounds)

0

20

40

60

80

100

A
v

g
 H

o
ld

 T
im

e
o

f
M

a
x
im

u
m

R
et

en
ti

o
n

 S
ta

te
 (

in
 r

o
u

n
d

s)

1-1000
1001-2000
2001-3000
3001-4000
4001-5000
5001-6000
6001-7000
7001-8000
8001-9000
9001-10000
10001-higher

Non-bounded Cells

Figure 11: Average Hold Time of Cells in Module A1

4.2.1 Description of the Experiment
In this experiment, we measure the average amount of time a cell

spends in its different retention states. We have tested the modules
at a refresh interval of 1 to 20 seconds with a 1-second increment
for 100 rounds at 45 ◦C (corresponding to 82 ms to 1640 ms with
an 82 ms increment at 85 ◦C). We monitor the number of rounds
a cell spends at a specific retention state before it moves to some
other retention state, referred to as hold time. After 100 rounds, we
calculate the average hold time a cell spends in its minimum and
maximum retention state.

We divide the cells into two different categories: cells with
bound-ed and unbounded maximum retention times. The first cate-
gory, called the bounded cells, consists of the cells that always have
retention states lower than 20 s. These cells always fail at poten-
tially different refresh intervals within our tested refresh interval of
20 s. The other category, called the non-bounded cells, consists of
cells that fail within the 20 s of refresh interval in some rounds, but
do not fail at all in at least one round. Since they do not fail in a
round, we cannot accurately determine (hence, bound) the maxi-
mum retention time of these cells. Figure 11 plots the average hold
times of the maximum and minimum retention states of bounded

525

0 2 4 6 8 10 12 14 16 18 20

Refresh Interval (in seconds)

0

20

40

60

80

100

P
er

ce
n

ta
g

e
o
f

V
R

T
 C

el
ls

High Retention State Dominant

Low Retention State Dominant

Other

(a) Module A1

0 2 4 6 8 10 12 14 16 18 20

Refresh Interval (in seconds)

0

20

40

60

80

100

P
er

ce
n

ta
g

e
o
f

V
R

T
 C

el
ls

High Retention State Dominant

Low Retention State Dominant

Other

(b) Module B1

0 2 4 6 8 10 12 14 16 18 20

Refresh Interval (in seconds)

0

20

40

60

80

100

P
er

ce
n

ta
g

e
o
f

V
R

T
 C

el
ls

High Retention State Dominant

Low Retention State Dominant

Other

(c) Module C1

Figure 12: Percentage of VRT Cells with High or Low Retention States Dominant

and non-bounded cells in module A1. Instead of representing each
cell, we group the failing cells that have the same hold times. Each
point (x, y) in the figure represents a group of cells that spends on
average x rounds in the minimum retention state and y rounds in
the maximum retention state. We use color intensity to represent
the number of cells at each point. The more cells belonging to a
specific bin, the brighter the color of that bin.

We observe from the figure that most of the cells appear in the
bins that are very close to either the x axis or the y axis. The cells
near the y axis spend a very short time (1-2 rounds) in the low reten-
tion state. Similarly, the cells near the x axis spend a very short time
in the high retention state. This characteristic is similar for bounded
and non-bounded cells in all the tested modules. This trend implies
that most cells have dominant states. We call those cells that spend
more than 98 (out of 100) rounds in either the low or high retention
states as dominant-state cells. Cells with a dominant low retention
state frequently fail in tests and can be discovered easily. However,
cells with a dominant high retention state mostly spend their time
in the high retention state. Therefore, these cells tend to not fail
in most of the testing rounds. As a result, these cells are hard to
discover through testing.

Observation: Most VRT cells have dominant retention time
states: they spend most of the time either at a low or high reten-
tion state.

Implication: VRT cells with a dominant high retention state are
hard to discover through testing.

4.2.2 Number of Undiscovered Retention Failures
Based on our data, we present the percentage of cells that spend

a long time in the high retention state among all the VRT cells. Fig-
ure 12 shows the percentage of dominant-state cells at each refresh
interval for one module from three manufacturers. Figure 13 shows
the percentage of dominant-state cells averaged over all the tested
modules, along with the standard deviation. Based on the figures,
we make three conclusions on the behavior of VRT cells. First,
on average around 90% of the cells are either low-state-dominant
or high-state-dominant cells. Second, a significant portion of the
VRT cells (around 40-20%) are high-state-dominant cells irrespec-
tive of the refresh interval. These cells would be hard to discover.
Third, the percentage of high-state-dominant cells decreases with
refresh interval. The reason is high refresh interval increases the
chance that a cell is more likely to have a lower retention state.

Based on these experimental observations, we conclude that
there will likely be a significant portion of VRT cells that remain

0 2 4 6 8 10 12 14 16 18 20

Refresh Interval (in seconds)

0

20

40

60

80

100

P
er

ce
n

ta
g

e
o

f
V

R
T

 C
el

ls

High Retention State Dominant

(a) High State Dominant

0 2 4 6 8 10 12 14 16 18 20

Refresh Interval (in seconds)

0

20

40

60

80

100

P
er

ce
n

ta
g

e
o

f
V

R
T

 C
el

ls

Low Retention State Dominant

(b) Low State Dominant

Figure 13: Percentage High and Low Retention State Dominant
Cells in All Tested Modules

undetected by testing at any refresh interval deployed in the sys-
tem. This reinforces our previous observation (in Section 4.1) that
testing alone is likely not enough to discover all retention failures.

5. EFFICACY OF GUARDBANDING
The effectiveness of the guardband depends on the differences in

retention states of a VRT cell. A small guardband would be effec-
tive if the retention time difference between the retention states of a
cell is small. We want to answer these questions: 1) How much dif-
ference is present in the retention time states of VRT cells? 2) How
effective is adding a guardband at the system-level, in the presence
of a large number of intermittent VRT failures?

5.1 Description of the Experiment
In this experiment, similar to Section 4.2, we have tested the

modules at a refresh interval of 1 to 20 seconds with a 1-second in-
crement for 100 rounds at 45 ◦C (corresponding to 82 ms to 1640
ms with an 82 ms increment at 85 ◦C). However, this time, we
monitor the retention state of the cells in each round. VRT cells
exhibit more than one retention time state in different rounds. We
categorize the cells into two-state and multi-state cells. The two-
state cells are the cells that move back and forth between only two
retention states. The multi-state cells exhibit more than two states.
Similar to the prior experiment, we further categorize these cells
as bounded and non-bounded cells (Section 4.2 provides the def-
inition of these). Recall that a bounded cell always has retention
states lower than 20 s, the maximum tested retention time, whereas
a non-bounded cell does not fail the retention test in at least one

526

0 4 8 12 16 20

Retention Time (in seconds)

1

10

100

1000

10000

100000

1000000

N
u

m
b

er
 o

f
F

a
il

in
g
 C

el
ls

Two State Bounded

0 4 8 12 16 20

Retention Time (in seconds)

1

10

100

1000

10000

100000

1000000

N
u

m
b

er
 o

f
F

a
il

in
g

 C
el

ls

Two State Non-bounded

0 4 8 12 16 20

Retention Time (in seconds)

1

10

100

1000

10000

100000

1000000

N
u

m
b

er
 o

f
F

a
il

in
g

 C
el

ls

Multi State Bounded

0 4 8 12 16 20

Retention Time (in seconds)

1

10

100

1000

10000

100000

1000000

N
u

m
b

er
 o

f
F

a
il

in
g

 C
el

ls

Multi State Non-bounded

Figure 14: Retention States in Module A1

X
+
1

X
+
2

2
X

3
X

4
X

5
X

Guard Band

0

25

50

75

100

P
er

ce
n

ta
g
e

o
f

V
R

T
 C

el
ls

3s

5s

7s

9s

(a) Module A1

X
+
1

X
+
2

2
X

3
X

4
X

5
X

Guard Band

0

25

50

75

100

P
er

ce
n

ta
g
e

o
f

V
R

T
 C

el
ls

3s

5s

7s

9s

(b) Module B1
X
+
1

X
+
2

2
X

3
X

4
X

5
X

Guard Band

0

25

50

75

100

P
er

ce
n

ta
g
e

o
f

V
R

T
 C

el
ls

3s

5s

7s

9s

(c) Module C1

Figure 15: Coverage of Guardbanding in Module A1, B1, and C1

X
+
1

X
+
2

2
X

3
X

4
X

5
X

Guard Band

0

25

50

75

100

P
er

ce
n

ta
g
e

o
f

V
R

T
 C

el
ls

3s

X
+
1

X
+
2

2
X

3
X

4
X

5
X

Guard Band

0

25

50

75

100

P
er

ce
n

ta
g
e

o
f

V
R

T
 C

el
ls

5s

X
+
1

X
+
2

2
X

3
X

4
X

5
X

Guard Band

0

25

50

75

100

P
er

ce
n

ta
g
e

o
f

V
R

T
 C

el
ls

7s

Figure 16: Coverage of Guardbanding in All Modules

round, which means that its maximum retention time cannot be de-
termined with our experiments. Figure 14 presents the retention
states of all the VRT cells found in this experiment for module A1.
Due to space constraints, we place the results from other modules
online [16]. The behavior remains similar across the tested modules
and we summarize the results for one module from each vendor in
Figure 15.

Figure 14 shows the retention states of two-state (bounded and
non-bounded) cells and multi-state (bounded and non-bounded)
cells in different plots. Instead of plotting every cell, we group the
cells having the same retention states. Each line in the plots repre-
sents a group of cells with the same retention states. The markers
in the line represent the retention states of that group of cells. For
example, a line at (x1, y) to (x2, y) represents that there are y cells
that have retention states x1 and x2. The overlapping lines indicate
that there are some groups of cells with different retention states
but the same number of cells in the group. To distinguish among

these groups, we use different marker sizes for different groups. a
larger marker size represents a higher retention state. We plot the
non-bounded retention time state as 21 s in the plots.

The first plot shows the retention states of the two-state bounded
cells. We observe that most of the cells have very close retention
states (notice the log scale in the y axis). There are only a few cells
that have non-consecutive retention states. The next plot shows the
retention states of the two-state non-bounded cells. We observe that
the number of cells that exhibit non-bounded behavior is almost
10X lower than the bounded cells. For example, for module A1,
110 cells have retention states of 3 s and 4 s, but only 10 cells move
between the retention state of 3 s and the non-bounded state. This
implies that a small guardband can be effective for a large fraction
of the cells for tolerating intermittent retention time changes. We
see a similar trend with the multi-state cells: most of the cells have
close-by retention states and only a small number of cells shows a
large difference among the multiple states. For cells where there is
a large difference in the different retention time states, even a large
amount of guardband may not be effective at tolerating intermittent
retention time changes.

Observation: Most of the intermittently failing cells have very
close retention states in terms of retention time. However, there
also exists VRT cells with large differences in retention states.

Implication: Even a small guardband is likely effective for most
of the VRT cells. However, even a large guardband is likely ineffec-
tive for the remaining VRT cells with large differences in retention
time states.

5.2 Coverage of Guardbanding
We determine the fraction of failing cells that different amounts

of guardbanding can effectively mitigate (i.e., avoid failures for).
To determine the coverage of each guardband, we perform three
steps as described in Section 2.3.2. For example, at a refresh inter-
val of 3 s the steps to determine the coverage of a 2X guardband
are: 1) We identify the failing bits at a refresh interval of 6 seconds
(2X). 2) These faulty bits are assumed to be repaired using differ-
ent mitigation techniques and do not cause any further failures in
the original refresh interval of 3 s. 3) Then, we determine the cov-
erage of the guardband at 3 s by determining the fraction of VRT
cells observed in our experiment that now operate correctly with
the guardband but otherwise would have failed.

The guardbands considered are X + 1s, X + 2s, 2X , 3X , 4X ,
and 5X at refresh intervals of 3, 5, 7, and 9 seconds. We show the

527

1 10 100 1000

Number of Rounds

No ECC

No ECC, 2X Guardband

SECDED (8B)

SECDED (8B), 2X Guardband

DECTED (8B)

DECTED (8B), 2X Guardband
1E+00

1E-06

1E-12

1E-18

1E-24

1E-30

P
ro

b
a
b

il
it

y
 o

f
N

ew
 F

a
il

u
re

(a) Module A1

1 10 100 1000

Number of Rounds

1 Bit Failure

1 Bit Failure, 2X Guardband

2 Bit Failure

2 Bit Failure, 2X Guardband

3 Bit Failure

3 Bit Failure, 2X Guardband
1E+06

1E+00

1E-06

1E-12

1E-18

1E-24

E
x
p

ec
te

d
 N

u
m

b
er

 o
f

W

o
rd

s
(8

B
)

(b) Module A1

1 10 100 1000

Number of Rounds

1 Bit Failure

2 Bit Failure

3 Bit Failure

1E+00

1E-06

1E-12

1E-18

1E+06

1E+12

E
x
p

ec
te

d
 N

u
m

b
er

 o
f

W
o
rd

s
(8

B
)

(c) All Modules

Figure 17: Effectiveness of ECC with Testing and Guardbanding

coverage of failing VRT cells with each guardband in Figure 15 for
one module from each vendor. We also present the coverage av-
eraged over all tested modules at each refresh interval, along with
the standard deviation of coverage across all tested modules in Fig-
ure 16. Based on the figures, we make three observations. First,
even a small guardband can achieve 85−95% coverage. The reason
is that most of the cells exhibit very close retention states and get
repaired by the guardband. Second, the coverage does not change
significantly even if we increase the amount of guardband to 5X .
This characteristic can be explained by our experimental observa-
tion that only a very small fraction of cells have large differences
in retention time states. Third, coverage does not depend on the
refresh interval and remains mostly the same.

We conclude that a small guardband (e.g., 2X) can avoid most
of the failing cells. However, even a large guardband (e.g., 5X) is
not effective for the remaining VRT cells, indicating that using a
guardband alone is not effective to mitigate all intermittent reten-
tion failures.

6. EFFICACY OF ECC
In this section, we present the effectiveness of ECC when used

with other mitigation techniques. We focus on two aspects of ECC,
1) reduction in the probability of a new failure and 2) expected
number of multi-bit failures when the system can perform online
testing and guardbanding.

When a system is capable of online testing, it can detect retention
failures and repair those bits. Repairing the bits reduces the proba-
bility of a new bit failure and thus the system can adjust the amount
of ECC required to correct the random VRT failures that occur after
the system-level testing. The dotted lines in Figure 17a show the
number of rounds required to reduce the probability of a new reten-
tion failure in the presence of single error correcting, double error
detecting (SECDED) code and double error correcting, triple error
detecting (DECTED) code versus the number of rounds rounds of
tests employed. The solid lines also represent the probability of
retention failure with SECDED and DECTED, but with an added
guardband (2X). The retention failure rate with all the patterns
(All) from Figure 6 is used to calculate the probability of failure in
the presence of ECC at 8B granularity (derived from the Equations
(2), (3), and (4) in Appendix). We make two observations from this
figure. First, we can achieve a much higher reduction in the proba-
bility of a new failure, when the system employs testing and guard-

banding along with ECC. Only a few rounds of testing can reduce
the retention failure rate by 107/1012 times, when used in conjunc-
tion with SECDED/DECTED and a 2X guardband. Contrast this
with the much smaller 100/105 times reduction in retention fail-
ure rate when only SECDED/DECTED is used. Second, a higher
number of rounds of tests along with ECC can further reduce the
retention failure rate. The probability of a new failure can be re-
duced by as much as 1012/1018 times after 1000 rounds of testing
when testing is used in conjunction with SECDED/DECTED.

These observations imply that ECC, when used with other miti-
gation techniques, can effectively tolerate a high error rate.

Observation: Testing and guardbanding along with ECC pro-
tection can significantly reduce the retention failure rate.

Implication: A combination of error mitigation techniques is
more effective at tolerating a high error rate than each technique
alone.

The strength of the required ECC depends on the probability of
the multi-bit failures in a module. We present the expected num-
ber of words with 1, 2 and 3 bit failures when the system employs
other mitigation techniques in Figures 17b and 17c (refer to Equa-
tion (5) in Appendix). These figures clearly show that the number
of multi-bit failures reduces with rounds of testing. We make two
observations. First, the expected number of single-bit failures re-
duces with testing, but does not reach to zero. Second, with 1000
rounds of testing, the expected number of 2-bit and 3-bit failures
become negligible (10−6). We conclude that a system-level online
profiling mechanism can tolerate a higher failure rate when used in
conjunction with other mitigation techniques.

7. EFFICACY OF SOPHISTICATED
MITIGATION TECHNIQUES

In light of the efficacy of testing, guardbanding, and ECC ob-
served and quantified in our experiments, we evaluate the adequacy
of some recently proposed error mitigation techniques.

7.1 Bit Repair Techniques
System-level bit repair techniques perform online testing and re-

pair the detected faulty bits using different mechanisms (remap-
ping, higher refresh rate for the faulty rows, disabling faulty pages,
error correcting pointers, etc) [38, 27, 50, 26]. These mechanisms
assume that all bit failures can be detected by testing after the initial

528

Number of Rounds

0

5

10

15

20

25

T
im

e
to

 F
a
il

u
re

 (
in

 d
a

y
s)

No Guardband

2X Guardband

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

(a) Bit Repair [38, 27, 50]

0 100 200 300 400 500 600 700 800 900 1000

Number of Rounds

No Guardband

2X Guardband
1E+02

1E+00

1E-02

1E-04

1E-06

1E-08
T

im
e

to
 F

a
il

u
re

 (
in

 y
ea

rs
)

(b) VS-ECC [4]

1 10 100 1000 10000

Number of Rounds

4EC5ED (1KB)

4EC5ED (1KB), 2X Guardband

3EC4ED (1KB)

3EC4ED (1KB), 2X Guardband

DECTED (1KB)

DECTED (1KB), 2X Guardband

SECDED (1KB)

SECDED (1KB), 2X Guardband
1E+25

1E+20

1E+00

1E+15

1E+10

1E+05

1E-05

T
im

e
to

 F
a

il
u

re
 (

in
 y

ea
rs

)

(c) Hi-ECC [52]

Figure 18: Effectiveness of Recent Error Mitigation Techniques with Testing and Guardbanding

system boot-up and no new errors occur in DRAM after repairing
the failing bits detected by the initial test. In our experiments, we
observe that even after thousands rounds of testing, new bits keep
failing at a very low rate. This implies that all these mechanisms
will fail even after very long (initial) tests. Figure 18a presents the
expected time to failure of these mechanisms when the system can
run a million rounds of tests. The time to failure of the system is
calculated using the probability of a new failure from Figure 6 (re-
fer to Equation (6) in Appendix). With each round of testing, the
detected faulty bits get repaired and the probability of a new failure
keeps decreasing. However, in these mechanisms, the system will
fail even if a single bit failure occurs during runtime after the ini-
tial testing. Figure 18a shows that the system will fail within hours
after 10 thousand rounds of tests. Even after 10 million rounds of
initial testing, the system will fail in 13 days. We also present the
expected time to failure with an added guardband. Even though
adding a guardband improves time to failure, the system still fails
within 23 days after more than 10 million rounds of initial testing.
In a real system, each round of test consists of writing one specific
data pattern in the entire module, waiting for 64 ms to keep the
cells idle so that the retention failures can manifest and then read-
ing the entire module to detect the failing cells. It will take 413.96
ms to test a 2 GB module for a round with just one data pattern
(refer to Equation (8) in Appendix for details). 10 million rounds
of initial testing with all our tested patterns would take more than
7.9 months. Even so, the system would fail within a month after
the initial test. Our analysis, thus shows that bit-repair mechanisms
that perform only initial tests (as they were proposed) are not fea-
sible to deploy in a practical system in the presence of intermittent
retention failures.

7.2 Variable Strength ECC (VS-ECC)
VS-ECC uses variable strength ECC to protect different lines in

memory [4]. The system performs an initial test to detect lines with
one or more errors and protect them using 4EC5ED code, but uses
SECDED for rest of the memory. VS-ECC will fail if there are two
or more errors in the lines protected by SECDED. We calculate
the probability of failure for VS-ECC and determine the expected
time to failure using the probability of failure from Figure 6 (re-
fer to Equation (7) in Appendix). After each round of testing, the

new failing words found are protected by stronger ECC. Figure 18b
shows the expected time to failure with number of rounds of test-
ing. Within 550 rounds of testing (which takes around 19 minutes)
the system achieves a time-to-failure of 10 years. This figure also
shows that adding a guardband can reduce the number of rounds of
testing required to achieve the same guarantee. With a 2X guard-
band, the system needs only 200 rounds of testing (which takes
around 7 minutes). Our analysis illustrates that a system has to run
the initial test for several minutes to achieve a reasonable reliability
guarantee even with a 2 Gb chip. The length of the initial test could
be longer in future high density chips. Blocking entire memory
for a significant amount of time may result in throughput loss and
thus such a mechanism would be difficult to deploy in a practical
system. This implies that a practical and efficient online profiling
system should be designed to make VS-ECC effective. In such a
mechanism, testing would be spread across a large interval and be
performed in isolated parts of the memory such that other programs
can still use the remaining parts of the memory.

7.3 Higher Strength ECC (Hi-ECC)
Hi-ECC is an ECC based mechanism that uses very strong ECC

(5EC6ED) to tolerate a high error rate [52]. It amortizes the cost of
ECC by protecting a larger chunk of data (1KB). We show that
testing and guardbanding can be very effective at providing the
same reliability guarantee but using weaker ECC. In Figure 18c,
we present the expected time to failure of a system that can use on-
line testing and guardbanding. This figure shows that with only one
round of test (which takes 2.06 s), the system can effectively reduce
ECC strength to 3-bit correcting, 4-bit detecting (3EC4ED) code
and can still provide a 10-year time-to-failure guarantee. After 100
rounds of tests (which takes around 3.5 minutes), ECC strength can
be reduced to DECTED. To decrease the strength to SECDED, the
system will need to perform around 7000 rounds of tests (taking
almost 4 hours), reducing the overhead of ECC by 80%. This fig-
ure also shows that with an added guardband, this system can start
with 4EC5ED and can reduce ECC strength to DECTED within 10
rounds of testing (20.6 s). However, the system will still need to
go through 7000 rounds of tests (taking almost 4 hours) to apply
SECDED. Though blocking memory for 4 hours is not acceptable,
if these 7000 rounds of tests are spread over time for only some

529

rows in memory (such that testing can be efficient), we can still
provide 10-years of time to failure guarantee using only SECDED.

This observation implies an interesting characteristic of online
mitigation techniques. We show that we can enable many differ-
ent optimizations if an effective online profiling mechanism can be
designed to run continuous tests in the background without disrupt-
ing other programs. A system can start with a strong ECC code at
the beginning (same as Hi-ECC), but instead of paying the latency,
area, and power penalty for strong ECC at every access, an effec-
tive online profiling mechanism can use SECDED after profiling
for errors for some time. Based on our observations and analysis,
we sketch a high-level architectural design for an efficient system-
level online profiling mechanism in the next section.

8. ENABLING A SYSTEM-LEVEL
ONLINE PROFILING MECHANISM

An online profiling technique for DRAM would test the module
while the system is running and the memory is in use. The mem-
ory controller would be responsible for locating and repairing the
faulty cells to mitigate the errors and ensure reliable DRAM opera-
tion. Such a system would not only improve DRAM reliability, but
would also increase DRAM yield even in the presence of high error
rates, by identifying and repairing bit errors rather than discarding
chips with errors. An effective online profiling mechanism can ad-
dress DRAM scaling challenges and play a critical role in enabling
high-density, low-cost DRAM in the future.

8.1 Designing an Online Profiling Mechanism
An online profiler needs to be non-intrusive, operating in the

background to allow continual testing without disrupting the use of
the system. Long tests are undesirable as they would prevent user
programs from accessing memory, resulting in a significant per-
formance overhead. In light of our observations, we suggest that
an online profiling mechanism can be designed by using a combi-
nation of testing, guardbanding, and ECC. The goal of an effective
online profiling mechanism is to detect most of the errors with short
tests performed at regular intervals. Here, we sketch the steps in-
volved in a preliminary online profiling mechanism. The evaluation
of such a mechanism is outside the scope of this work.

Initial Reliability Guarantee using ECC: Initially, before any
profiling, the chips are protected by ECC to guarantee reliable
DRAM operation. The memory controller is responsible for
correcting erroneous data through a mechanism like virtualized
ECC [56] whose error correction strength can be varied dynam-
ically. Without any testing and guardbanding, the cost of ECC
would likely be high.

Discovering Errors with Short Tests: Next, the memory con-
troller runs tests to discover and repair the faulty bits. Adding a
guardband can reduce the error rate by ten times(Section 5). The
test for adding a guardband involves testing the chips at a high re-
fresh interval and can be done just after the system starts. The
guardband test can be done within a short period as it does not re-
quire rounds of tests. Later, during the regular use of the memory,
the memory controller can run short rounds of tests to discover the
intermittently failing cells. In order to prevent major performance
overheads, a round of test is run after some regular interval. Thus,
in order to reduce the overhead of testing, we propose that future
online profilers test small regions of memory at regular intervals.

Adjusting the ECC strength: After some number of testing
rounds, most of the failing bits get discovered and effectively get
repaired. When the rate of retention failures reduces by an accept-
able amount, the strength of the employed ECC can be correspond-
ingly adjusted to reduce the ECC overhead.

8.2 Challenges and Opportunities
of an Online Profiling Mechanism

We briefly describe some of the challenges and potential oppor-
tunities of designing an online profiler.

Reducing Performance Overhead: In a real system, the over-
head of running even one round of test in a specific region of mem-
ory can have noticeable performance overhead. A round of test
consists of writing some data pattern in the region under test, wait-
ing for a certain amount of time to make sure cells are idle for the
entire refresh interval and then reading out that region to locate the
failures. This test would make the region under test unavailable to
programs for hundreds of milliseconds. We argue that future on-
line profiling works must address the challenges of reducing this
performance overhead by designing intelligent mechanisms. We
sketch some potential directions that can be used to mitigate the
performance overhead: 1) One mechanism can be pinning the spe-
cific memory region into the cache while that region is being tested.
Memory requests to the region under test would be satisfied by the
cache and would not block the programs. However, there is a trade-
off between the size of the region that can be temporally stored in
the cache without evicting a large portion of the working set vs.
the number of individual tests that would be required to profile the
whole module. 2) Keeping a pool of unallocated pages and testing
them extensively before they are allocated to a program can im-
prove performance at the cost of some effective memory capacity
loss. This hardware-software collaborative mechanism would need
an interface to the system software to prevent allocating pages un-
der test. 3) Many applications have periodic compute and memory
phases. A memory controller can be designed to predict phases
where a portion of memory remains idle and run online tests dur-
ing those periods to reduce the performance overhead.

Reducing Mitigation Overhead: The ultimate goal of detect-
ing failures through online profiling is to mitigate those failures
and provide reliable operation. Recent mechanisms proposed effi-
cient techniques to reduce the overhead of mitigation mechanisms.
For example, ArchShield, which mitigates failures by remapping
faulty words in a region of memory, uses a fault map to efficiently
determine the location of remapping [38]. Using a higher refresh
rate for rows with failures is another mitigation technique. RAIDR
uses Bloom filters to efficiently store the location of the rows that
are required to be refreshed more frequently [27]. However, as we
have shown in Section 7, these mechanisms as proposed, do not
consider intermittent failures and lead to potential data loss. We
envision these techniques would be extended with online profiling
mechanisms to dynamically determine the current set of failures
and optimize the overheads depending on the current failure rate.

Enabling Failure-aware Optimizations: An online profiling
mechanism enables optimization techniques to take advantage of
the inherent resiliency of some applications at run-time. Many of
the previously proposed resiliency techniques that allocate error-
prone regions to data that can tolerate errors [29, 7, 30, 25, 9] would
directly benefit from an efficient online profiling mechanism, by
being able to determine the error-prone locations at run-time.

9. CONCLUSION
We have studied and analyzed the effectiveness of different

system-level error mitigation techniques for retention failures in
commodity DRAM, with the goal of enabling efficient and effective
reliability techniques for future DRAM. We make several observa-
tions on the error mitigation techniques based on the experimental
data collected from 96 DRAM chips manufactured by three differ-
ent vendors, using an FPGA-based DRAM testing infrastructure.
First, we show that only a small amount of testing can discover

530

the majority of cells with intermittent retention failures. From our
experiments, only 5 rounds of tests can discover most of the in-
termittent failures and reduce the probability of retention failure
by 100 times. However, even after thousands of rounds of testing,
a very small number of cells exhibit new failures not discovered
before. Second, we show that even a small guardband (e.g., 2X)
can avoid 85-95% of the intermittently failing cells and reduce the
probability of retention failure by ten times. At the same time, even
a large guardband (e.g., 5X) is not effective for the remaining inter-
mittently failing cells. Third, we show that using only single error
correction codes can reduce the retention error rate by only 100
times, but using single error correction codes together with testing
and guardbanding can reduce the error rate by as much as 1012

times. Fourth, based on our data, we quantify recently proposed
system-level error mitigation techniques that do not consider in-
termittent failures, showing that our measured results significantly
impact these works’ conclusions. We show that bit repair mech-
anisms that rely on testing [38, 27, 50, 26] cannot provide strong
reliability guarantees even after months of testing. On the other
hand, ECC-based mitigation techniques [4, 52] can ensure reliable
DRAM operation when employed in conjunction with online test-
ing in a relatively short amount of time. We conclude that the via-
bility of these techniques depend on the development of an efficient
online profiling mechanism that does not significantly disrupt the
operation of the programs running on the system.

We hope that the empirical study and analysis of retention error
mitigation techniques, driven by experimental measurements from
real DRAM chips, presented in this paper can enable new, effective,
and efficient mechanisms in the future that will lead to more reli-
able design and operation of future DRAM systems. In particular,
we believe the development of efficient online retention time profil-
ing techniques for DRAM is a promising area of immediate future
work that can benefit from our characterizations and analyses.

ACKNOWLEDGEMENTS
We are grateful to Uksong Kang from Samsung for his helpful com-
ments. We thank the anonymous reviewers for their helpful feed-
back, and gratefully acknowledge the SAFARI Research Group
members for providing useful feedback. We acknowledge the sup-
port of the Intel Science and Technology Center on Cloud Comput-
ing. We thank our industrial partners for their support: IBM, Intel,
Qualcomm, and Samsung. This research was also partially sup-
ported by grants from NSF (CAREER Award CCF 0953246, CCF
1212962, and CNS 1065112).

REFERENCES
[1] R. D. Adams. High performance memory testing: Design

principles, fault modeling and self-test. Springer, 2003.
[2] J.-H. Ahn et al. Adaptive self refresh scheme for battery

operated high-density mobile DRAM applications. ASSCC,
2006.

[3] Z. Al-Ars et al. DRAM-specific space of memory tests. ITC,
2006.

[4] A. R. Alameldeen et al. Energy-efficient cache design using
variable-strength error-correcting codes. ISCA, 2011.

[5] R. Baumann. The impact of technology scaling on soft error
rate performance and limits to the efficacy of error
correction. IEDM, 2002.

[6] K. Chang et al. Improving DRAM performance by
parallelizing refreshes with accesses. HPCA, 2014.

[7] M. de Kruijf et al. Relax: An architectural framework for
software recovery of hardware faults. ISCA, 2010.

[8] P. G. Emma et al. Rethinking refresh: Increasing availability
and reducing power in DRAM for cache applications. IEEE
Micro, 28(6), Nov. 2008.

[9] H. Esmaeilzadeh et al. Neural acceleration for
general-purpose approximate programs. MICRO, 2012.

[10] D. Frank et al. Device scaling limits of Si MOSFETs and
their application dependencies. Proceedings of the IEEE,
89(3), 2001.

[11] T. Hamamoto et al. On the retention time distribution of
Dynamic Random Access Memory (DRAM). 1998.

[12] P. Hazucha and C. Svensson. Impact of CMOS technology
scaling on the atmospheric neutron soft error rate. TNS,
47(6), 2000.

[13] A. Hiraiwa et al. Local-field-enhancement model of DRAM
retention failure. IEDM, 1998.

[14] C.-S. Hou et al. An FPGA-based test platform for analyzing
data retention time distribution of DRAMs. VLSI-DAT,
2013.

[15] JEDEC. Standard No. 79-3F. DDR3 SDRAM Specification,
July 2012.

[16] S. Khan et al. The efficacy of error mitigation techniques for
DRAM retention failures: A comparative experimental study
– Full data sets.
http://www.ece.cmu.edu/~safari/tools/
dram-sigmetrics2014-fulldata.html.

[17] H. Kim et al. Characterization of the variable retention time
in dynamic random access memory. IEEE Trans. Electron
Dev., 58(9), 2011.

[18] K. Kim. Technology for sub-50nm DRAM and NAND flash
manufacturing. IEDM, 2005.

[19] K. Kim and J. Lee. A new investigation of data retention
time in truly nanoscaled DRAMs. IEEE Electron Device
Letters, 30(8), 2009.

[20] Y. Kim et al. A case for exploiting subarray-level parallelism
(SALP) in DRAM. ISCA, 2012.

[21] Y. I. Kim et al. Thermal degradation of DRAM retention
time: Characterization and improving techniques. IRPS,
2004.

[22] D. Lee et al. Tiered-latency DRAM: A low latency and low
cost DRAM architecture. HPCA, 2013.

[23] M. J. Lee and K. W. Park. A mechanism for dependence of
refresh time on data pattern in DRAM. Electron Device
Letters, 31(2), 2010.

[24] X. Li et al. A realistic evaluation of memory hardware errors
and software system susceptibility. ATC, 2010.

[25] X. Li and D. Yeung. Application-level correctness and its
impact on fault tolerance. HPCA, 2007.

[26] C.-H. Lin et al. SECRET: Selective error correction for
refresh energy reduction in DRAMs. ICCD, 2012.

[27] J. Liu et al. RAIDR: Retention-aware intelligent DRAM
refresh. ISCA, 2012.

[28] J. Liu et al. An experimental study of data retention behavior
in modern DRAM devices: Implications for retention time
profiling mechanisms. ISCA, 2013.

[29] S. Liu et al. Flikker: Saving DRAM refresh-power through
critical data partitioning. ASPLOS, 2011.

[30] Y. Luo. Characterizing application memory error
vulnerability to optimize data center cost. DSN, 2014.

[31] J. A. Mandelman et al. Challenges and future directions for
the scaling of dynamic random-access memory (DRAM).
IBM J. of Res. and Dev., 2002.

531

http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html

[32] T. C. May et al. Alpha-particle-induced soft errors in
dynamic memories. IEEE Trans. Electron Dev., 1979.

[33] Y. Mori et al. The origin of variable retention time in
DRAM. IEDM, 2005.

[34] W. Mueller et al. Challenges for the DRAM cell scaling to
40nm. IEDM, 2005.

[35] S. S. Mukherjee et al. The soft error problem: An
architectural perspective. HPCA, 2005.

[36] O. Mutlu. Memory scaling: A systems architecture
perspective. IMW, 2013.

[37] P. Nair et al. A case for refresh pausing in DRAM memory
systems. HPCA, 2012.

[38] P. J. Nair et al. ArchShield: Architectural framework for
assisting DRAM scaling by tolerating high error rates. ISCA,
2013.

[39] H.-D. Oberle et al. Enhanced fault modeling for DRAM test
and analysis. VTS, 1991.

[40] T. J. O’Gorman. The effect of cosmic rays on the soft error
rate of a DRAM at ground level. IEEE Trans. Electron Dev.,
41(4), 1994.

[41] P. J. Restle, J. W. Park, and B. F. Lloyd. DRAM variable
retention time. IEDM, 1992.

[42] S. E. Schechter, G. H. Loh, et al. Use ECP, not ECC, for hard
failures in resistive memories. ISCA, 2010.

[43] B. Schroeder et al. DRAM errors in the wild: A large-scale
field study. SIGMETRICS, 2009.

[44] H. W. Seo et al. Charge trapping induced DRAM data
retention time degradation under wafer-level burn-in stress.
IRPS, 2002.

[45] V. Sridharan et al. Feng Shui of supercomputer memory:
Positional effects in DRAM and SRAM faults. SC, 2013.

[46] V. Sridharan and D. Liberty. A study of DRAM failures in
the field. SC, 2012.

[47] G. R. Srinivasan et al. Accurate, predictive modeling of soft
error rate due to cosmic rays and chip alpha radiation. IRPS,
1994.

[48] A. J. van de Goor et al. An overview of deterministic
functional RAM chip testing. ACM Computing Surveys,
1990.

[49] A. J. van de Goor and A. Paalvast. Industrial evaluation of
DRAM SIMM tests. ITC, 2000.

[50] R. K. Venkatesan et al. Retention-aware placement in
DRAM (RAPID): Software methods for quasi-non-volatile
DRAM. HPCA, 2006.

[51] M.-J. Wang et al. Guardband determination for the detection
of off-state and junction leakages in DRAM testing. ATS,
2001.

[52] C. Wilkerson et al. Reducing cache power with low-cost,
multi-bit error-correcting codes. ISCA, 2010.

[53] Xilinx. ML605 Hardware User Guide, Oct. 2012.
[54] K. Yamaguchi. Theoretical study of deep-trap-assisted

anomalous currents in worst-bit cells of dynamic
random-access memories (DRAM’s). IEEE Trans. Electron
Dev., 47(4), 2000.

[55] D. Yaney et al. A meta-stable leakage phenomenon in
DRAM charge storage - Variable hold time. IEDM, 1987.

[56] D. H. Yoon and M. Erez. Virtualized and flexible ECC for
main memory. ASPLOS, 2010.

APPENDIX
• Effect of Temperature: In our experiments, the curve for normalized

retention time at different temperature corresponds to e−0.0625T ,
where T is the temperature. A 10 ◦C increase in temperature results
in a reduction of 1− e−0.0625∗10 = 46.5%.

• Probability of a New Failure with Rounds: The probability of find-
ing a new error with r rounds of tests is calculated as,
probability of a new bit failure at round r

=
number of new cells failing at round r

total number of cells . . . (1)

• Probability of Failure with ECC: Error correction codes are asso-
ciated with blocks of data. All our results assume that ECC protects
8B of data. We calculate the probability of failure in n bits from the
bit error rate, where n = 64 bits. If p is the probability of bit failure,
probability of failure in n bits, pn
= probability of any of the n bits failing
= 1− probability of all of the n bits not failing
= 1− (1− p)n . . . (2)

The probability of failure with single error correction, double error
detection (SECDED) in n bits is calculated as, pnSECDED

= probability of more than one bit in n bits failing
= 1− (probability of all of the n bits not failing +
probability of n− 1 of the n bits not failing)
= 1− ((1− p)n +

(n
1

)
p(1− p)(n−1)) . . . (3)

Similarly, the probability of failure with double error correc-
tion, triple error detection (DECTED) in n bits is calculated as,
pnDECTED

= probability of more than two bits in n bits failing
= 1− (probability of all of the n bits not failing +
probability of n− 1 of the n bits not failing +
probability of n− 2 of the n bits not failing)
= 1−((1−p)n+

(n
1

)
p(1−p)(n−1)+

(n
2

)
p2(1−p)(n−2)) . . . (4)

• Expected Number of Multi-Bit Failures: The expected number of
faulty bits per word is p ∗ n. If p ∗ n � 1, then the probability
(Pk) that the word has k errors (k ≥ 1) can be approximated by
Pk = (pn)k/k ! . . . (5)

• Time to Failure with Bit-Repair: Let the probability of a bit failing
be p and the probability of the system failing be psystem. If there
are n bits in the module, then, psystem
= 1− probability of no error in the entire module
= 1− (1− p)n

The expected number of trials to fail the system, t = 1/psystem. In
our infrastructure, there are np bit failures at every minute. There-
fore, Time to Failure in hours= t/60 . . . (6)

• Time to Failure with ECC: Let the system can correct k−1 bits per
word, the probability of k or more bit failure is pk and the probability
of the system failing is psystem. if there are n words in the module,
then, psystem
= 1− probability of no k or more bit error in n words
= 1− (1− pk)

n

The expected number of trials to fail the system, t = 1/psystem. In
our infrastructure, we test for error every minute. Therefore, Mean
Time to Failure in hours= t/60 . . . (7)

• Time to Test a Module: To test a module, we need to write a data
pattern in the entire module, wait for 64 ms and read the module to
detect the failures. In order to read/write a row, we need to read the
data from the cells in the row buffer (tRCD), transfer the row to the
memory controller, and close the row (tRP). According to DDR3-
1600 timing, time to read/write an 8KB row, tr = tRCD+tCCD ∗
(8KB/64B) + tRP = 13.75 + 5 ∗ 128 + 13.75 = 667.5 ns. In
a 2GB module, there are 262144 rows, so reading/writing the entire
module would take tr ∗262144 ns = 174.98 ms. So, to test a module
for a pattern it would take 174.98 + 64 + 174.98 ms = 413.96 ms.
We test the modules with five data patterns, so each round with all
data patterns takes 2.06 s. . . . (8)

532

	Introduction
	Background and Related Work
	DRAM Basics
	Retention Failures
	Data Pattern Sensitivity
	Variable Retention Time

	Mitigating Retention Failures
	Testing
	Guardbanding
	Error Correction Codes
	Recent Error Mitigation Techniques

	Our Goal and Scope

	Testing Infrastructure
	Efficacy of Testing
	Detecting Retention Failures with Testing
	Description of the Experiment
	Reducing Retention Failure Rate with Testing
	Retention Failure Coverage with Testing Rounds

	Undetected Retention Failures
	Description of the Experiment
	Number of Undiscovered Retention Failures

	Efficacy of Guardbanding
	Description of the Experiment
	Coverage of Guardbanding

	Efficacy of ECC
	Efficacy of Sophisticated Mitigation Techniques
	Bit Repair Techniques
	Variable Strength ECC (VS-ECC)
	Higher Strength ECC (Hi-ECC)

	Enabling A System-Level Online Profiling Mechanism
	Designing an Online Profiling Mechanism
	Challenges and Opportunities of an Online Profiling Mechanism

	Conclusion
	References

