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Abstract—The large-scale process and environmental variations
for today’s nanoscale ICs require statistical approaches for timing
analysis and optimization. In this paper, we demonstrate why the
traditional concept of slack and critical path becomes ineffective
under large-scale variations and propose a novel sensitivity frame-
work to assess the “criticality” of every path, arc, and node in
a statistical timing graph. We theoretically prove that the path
sensitivity is exactly equal to the probability that a path is critical
and that the arc (or node) sensitivity is exactly equal to the prob-
ability that an arc (or a node) sits on the critical path. An efficient
algorithm with incremental analysis capability is developed for
fast sensitivity computation that has linear runtime complexity
in circuit size. The efficacy of the proposed sensitivity analysis
is demonstrated on both standard benchmark circuits and large
industrial examples.

Index Terms—Process variations, sensitivity, statistical static
timing analysis.

I. INTRODUCTION

A S IC technologies are scaled to finer feature sizes, the
increasing fluctuations in manufacturing processes in-

troduce various uncertainties in circuit behavior, thereby sig-
nificantly impacting product yield. Further exacerbating the
problem is the increasing impact of environmental fluctuations,
such as those due to temperature and power supply variations.
Addressing the nanoscale manufacturing and design realities
requires a paradigm shift in the current design methodology
such that large-scale variations are considered at all levels of
design hierarchy.

Toward this goal, various algorithms have been proposed for
statistical timing analysis with the consideration of both process
and environmental variations [3]–[20]. Most of the proposed
solutions fall into one of two broad categories: path-based
approaches [3]–[9] and block-based approaches [10]–[20]. The
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path-based approaches can take into account the correlations
from both path sharing and global process parameters; however,
a set of critical paths must be preselected based on their
nominal delay values. In contrast, the block-based techniques
are more general yet are limited by various delay modeling
assumptions. For example, many block-based statistical timing
analysis algorithms [13]–[17] assume that delay variations can
be approximated as normal distributions in order to efficiently
handle both spatial correlations and reconvergent fan-outs.

Whereas statistical timing analysis has been intensively
studied, how to interpret and utilize its results remains an
open question. Most importantly, a new methodology of us-
ing timing-analysis results to guide timing optimization and
explore the tradeoffs between performance, yield, and cost is
required in the statistical domain. In nominal timing analysis,
critical path and slack are two important metrics that have
been widely applied to timing optimization, but the inclusion of
large-scale variations renders these traditional methodologies
obsolete.

First, the delay of each path is a random variable, instead
of a deterministic value, in statistical timing analysis. As such,
every path can be critical (i.e., have the maximal delay) with
certain probability. Second, the slacks at all nodes are random
variables that are statistically correlated. The parametric timing
yield is determined by the probability distributions of all these
slacks as well as their correlations. It, in turn, implies that
an individual slack at a single node is not a sufficiently good
metric that can be utilized to guide timing optimization. For
these reasons, a new timing performance criterion must be
proposed to accommodate the special properties of statistical
timing analysis/optimization.

In this paper, we propose a new concept of statistical timing
sensitivity to guide the timing optimization of logic circuits
with large-scale parameter variations. We define statistical tim-
ing sensitivities for paths, arcs, and nodes. The novelty of
this paper is the creation of a link between probability and
sensitivity. We prove that the path sensitivity is exactly equal
to the probability that a path is critical and that the arc (or node)
sensitivity is exactly equal to the probability that an arc (or a
node) sits on the critical path.

An important contribution of this paper is to propose a novel
algorithm for fast sensitivity computation and demonstrate how
one can evaluate the timing sensitivities by a single breadth-first
graph traversal. The computational complexity of the proposed
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Fig. 1. Simple timing graph example.

sensitivity analysis is linear in circuit size. In addition, an
incremental analysis capability is provided to quickly update
the statistical timing and sensitivity information after changes
to a circuit are made.

Our proposed path and arc sensitivities are theoretically
equivalent to the path and edge criticalities defined in [16]
and [21], respectively. Namely, the path (or arc) sensitivity
value is identical to the path (or arc) criticality value except
for numerical errors. However, the proposed sensitivity frame-
work is ready to handle several extensions, including (but not
limited to) the high-order sensitivities that will be discussed in
Section IV-E.

This paper is organized as follows. In Section II, we review
the background of statistical static timing analysis and then
discuss the statistical properties of slack and critical path in
Section III. We define various statistical timing sensitivities in
Section IV and develop the algorithm for sensitivity compu-
tation in Section V. The efficacy of the proposed sensitivity
analysis is demonstrated by several numerical examples in
Section VI. Finally, we conclude in Section VII.

II. BACKGROUND

A. Nominal Static Timing Analysis

Given a gate-level netlist, static timing analysis translates
the netlist into a timing graph, i.e., a weighted directed graph
G = (V,E) where each node Vi ∈ V denotes a primary input,
output, or internal net, each edge Ei = 〈Vm, Vn〉 ∈ E denotes a
timing arc, and the weight D(Vm, Vn) of Ei stands for the delay
value from the nodes Vm to Vn. In addition, a source/sink node
is conceptually added before/after the primary inputs/outputs so
that the timing graph can be analyzed as a single-input single-
output network. Fig. 1 shows a simple timing graph example.

There are several key concepts in nominal static timing
analysis, which are briefly summarized as follows. More details
on static timing analysis can be found in [31].

1) The arrival time (AT) at a node Vi is the latest time that
the signal becomes stable at Vi. It is determined by the
longest path from the source node to Vi.

Fig. 2. Two atomic operations for static timing analysis.

2) The required time (RT) at a node Vi is the latest time
that the signal is allowed to become stable at Vi. It is
determined by the longest path from Vi to the sink node.

3) Slack is the difference between the required time and the
arrival time, i.e., RT − AT. Therefore, a positive (or nega-
tive) slack means that the timing constraint is satisfied (or
failed).

4) Critical path is the longest path between the source and
sink nodes. In nominal timing analysis, all nodes along
the critical path have the same (i.e., smallest) slack.

The purpose of static timing analysis is to compute the arrival
time, the required time, and the slack at each node and then
identify the critical path. Taking the arrival time as an example,
static timing analysis starts from the source node, propagates
the arrival times through all timing arcs by a breadth-first graph
traversal and eventually reaches the sink node. Two atomic
operations, i.e., SUM(•) and MAX(•), as shown in Fig. 2, are
repeatedly applied during such a traversal.

After the static timing analysis is complete, the critical
path and the slack provide the necessary information that is
required for timing optimization. Roughly speaking, the gates
and interconnects along the critical path (where the slacks are
small) should be upsized to reduce delay, whereas those along
the noncritical paths (where the slacks are large) should be
downsized to save area and/or power.

B. Process Variation Modeling

According to the geometrical scale of their occurrence,
process variations can be classified into two broad categories:
interdie and intradie variations. Interdie variations model the
common/average variations across the die, whereas intradie
variations model the individual, but spatially correlated, local
variations within the same die.

In most practical applications, both interdie and intradie
variations are modeled as the random variables that are jointly
normal. In such cases, principal component analysis (PCA) can
be applied to find a set of independent factors to represent the
original correlated random variables [29].

Given N process parameters η = [η1, η2, . . . , ηN ]T, the
process variations ∆η = η − η0, where η0 contains the mean
values of η, are modeled as zero-mean random variables. The
correlation of ∆η can be represented by a symmetric, positive-
semidefinite covariance matrix R [29]. PCA decomposes R as
follows:

R = V · Σ · V T (1)

where Σ = diag(λ1, λ2, . . . , λN ) contains the eigenvalues of
R and V = [V1, V2, . . . , VN ] contains the corresponding eigen-
vectors that are orthonormal, i.e., V TV = I (I is an identity
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matrix). Based on Σ and V , PCA defines a set of new random
variables

∆ε = Σ−0.5 · V T · ∆η. (2)

These new random variables ∆ε = [∆ε1,∆ε2, . . . ,∆εN ]T are
called the principal components or factors. It is easy to verify
that {∆εi; i = 1, 2, . . . , N} are independent and standard nor-
mal (i.e., zero mean and unit variance) [29].

The essence of PCA can be interpreted as a coordinate
rotation of the space defined by the original random variables.
In addition, if the magnitude of the eigenvalues {λi} decreases
quickly, it is possible to use a small number of principal
components to approximate the original N -dimensional space.
More details on PCA can be found in [29].

C. Statistical Static Timing Analysis

Unlike nominal timing analysis, the gate/interconnect delays
in statistical timing analysis are all modeled as random vari-
ables to account for large-scale process variations. It means
that the weight D(Vm, Vn) associated with each timing arc is
a random variable instead of a deterministic value. Therefore,
the two atomic operations, SUM(•) and MAX(•), must handle
statistical distributions.

Many statistical timing analysis algorithms [13]–[17] ap-
proximate the gate/interconnect delays and the arrival times as
linear models

x = BT
x · ∆ε + Cx =

N∑
i=1

Bxi · ∆εi + Cx (3)

y = BT
y · ∆ε + Cy =

N∑
i=1

Byi · ∆εi + Cy (4)

where x and y denote two gate/interconnect delays or arrival
times, Cx, Cy ∈ R are the constant terms, Bx, By ∈ RN

contain the linear coefficients, {∆εi; i = 1, 2, . . . , N} is a set of
random variables to model process variations, and N is the total
number of these random variables. We assume that {∆εi; i =
1, 2, . . . , N} are independent standard normal distributions and
that they are extracted by the PCA in Section II-B. The random
variables x and y in (3) and (4) are the linear combina-
tions of multiple normal distributions and, therefore, are also
normal [30].

Given the linear models in (3) and (4), the SUM(•) operation
can be easily handled by the following:

x + y = (Bx + By)T · ∆ε + (Cx + Cy). (5)

The MAX(•) operation, however, is nonlinear. In other words,
the maximum of two normal distributions is not necessarily
normal. However, it is possible to approximate MAX(•) by a
linear model [13]–[17]

MAX(x, y) = α · x + β · y + γ (6)

Fig. 3. Slack distribution in statistical timing analysis.

where the constant term γ is determined by matching the mean
value

γ = E [MAX(x, y)] − α · E[x] − β · E[y] (7)

and the linear coefficients α and β are determined by either
matching the moments [13], [14], [17] or calculating the tight-
ness probabilities [16]

α = P (x ≥ y) (8)
β = P (y ≥ x). (9)

In (7)–(9), E(•) stands for the expected value and P (•) repre-
sents the probability.

III. STATISTICS OF SLACK AND CRITICAL PATH

In this section, we highlight the reasons why the traditional
concept of slack and critical path becomes ineffective under
process variations.

A. Slack

In nominal timing analysis, slack is utilized as a metric
to measure how tightly the timing constraint is satisfied. A
negative slack means that the timing constraint is not met,
whereas a (small) positive slack means that the timing con-
straint is (marginally) satisfied. In the statistical case, however,
it is difficult to make such a straightforward judgment, because
all slacks are random variables instead of deterministic values.
For instance, Fig. 3 shows two slack distributions computed
from statistical timing analysis. The node V1 presents a larger
probability that the slack is positive than the node V2. However,
the worst case (smallest) slack at V1 is more negative than that
at V2. Hence, it is hard to conclude which slack distribution is
better using a simple criterion.

More importantly, the slacks throughout a timing graph are
statistically correlated in statistical timing analysis and must
be concurrently considered to determine the parametric timing
yield. In nominal timing analysis, it is well known that the tim-
ing constraint is satisfied if and only if all slacks in the timing
graph are positive. In the statistical case, this condition can be
stated as follows: The probability that the timing constraint
is satisfied (i.e., the parametric timing yield) is equal to the
probability that all slacks are positive.

Yield = P [SlackV 1 ≥ 0 & SlackV 2 ≥ 0 · · ·]. (10)

Studying (10), we notice that such a probability depends
on all slack distributions as well as their correlations. Unlike
nominal timing analysis where slacks are deterministic values
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without correlations, knowing individual slack distributions in
statistical timing analysis is not sufficient to determine the
parametric timing yield. The probability in (10) cannot be
accurately evaluated if the correlations are ignored. The afore-
mentioned analysis implies an important fact that an individual
slack distribution at a single node may not be meaningful in
statistical timing analysis.

However, there exist some “important” nodes for which the
slacks have special meanings. Given a timing graph, we define
the node VIN as an important node if all paths in the timing
graph pass VIN. Based on this definition, the source and sink
nodes are two important nodes, because all paths start from the
source node and terminate at the sink node. In some special
timing graphs, it is possible to find other important nodes.
For example, the node e in Fig. 1 is an important node by
this definition. The importance of the node is that, if VIN is
an important node, the parametric timing yield in (10) can be
uniquely determined by the slack at VIN

Yield = P [SlackVIN ≥ 0]. (11)

The physical meaning of (11) can be intuitively explained
by the concept of Monte Carlo simulation. When a timing
graph is simulated by Monte Carlo analysis, a delay sample
(i.e., a set of deterministic delay values for all timing arcs) is
drawn from the random variable space in each Monte Carlo
run. The parametric timing yield is equal to Num1 (the number
of samples for which the timing constraint is satisfied) divided
by Num (the total number of Monte Carlo runs). Similarly,
the probability SlackVIN ≥ 0 is equal to Num2 (the number of
samples for which the slack at VIN is positive) divided by Num.
In each Monte Carlo run, the timing constraint is failed if and
only if there is a path P whose delay is larger than the given
specification. In this case, the slack at VIN must be negative
because all paths pass the important node VIN, and therefore,
VIN must be on the path P . The aforementioned analysis proves
that Num1 is equal to Num2, yielding (11).

Equations (10) and (11) indicate another difference between
nominal and statistical timing analyses. In nominal timing
analysis, the slack at any node along the critical path uniquely
determines the timing performance. In statistical timing analy-
sis, however, only the slack at an important node uniquely de-
termines the timing performance. Compared with those nodes
on the critical path, important nodes belong to a much smaller
subset, because they must be shared by all paths in the timing
graph.

The aforementioned concept of important node can be ex-
tended to a node set. If we remove a set of nodes and cut the
entire timing graph into two disconnected subgraphs, where
one subgraph contains the source node and the other subgraph
contains the sink node, we refer to the set of the removed nodes
as a separating node set. It is easy to verify that all paths from
the source node to the sink node pass through the separating
node set. Therefore, following the same reasoning of the Monte
Carlo simulation, it can be proven that the parametric timing
yield is uniquely determined by the slacks of all nodes in a
separating node set

Yield = P [SlackW1 ≥ 0 & SlackW2 ≥ 0 · · ·] (12)

where SlackWi represents the slack at the ith node of the
separating node set.

B. Critical Path

Similar to slack, there are several major differences between
nominal and statistical timing analyses on critical path. First,
given a timing graph, the maximal delay from the source node
to the sink node can be expressed as

D = MAX(DP1,DP2, . . .) (13)

where DPi is the delay of the ith path. In nominal timing
analysis, D = DPi if and only if the path Pi is critical. In sta-
tistical timing analysis, however, every path can be critical (i.e.,
have the maximal delay) with certain probability. Although it is
possible to define the most critical path as the path Pi that has
the largest probability to be critical, the maximal circuit delay in
(13) must be determined by all paths instead of the most critical
path only.

Second, but more importantly, the critical path concept is not
so helpful for statistical timing optimization. In the nominal
case, the gates and interconnects along the critical (or non-
critical) path are repeatedly selected for up (or down) sizing.
This strategy becomes ineffective under process variations.
One important reason is that many paths may have similar
probabilities to be critical and all of them must be considered
for timing optimization. Even in the nominal case, many paths
in a timing graph can be equally critical, which is the so-
called “slack wall” [23]. This multiple-critical-path problem is
more pronounced in statistical timing analysis, because more
paths can have overlapped delay distributions due to large-scale
process variations. In addition to this multiple-critical-path
problem, we will demonstrate in Section IV-B that selecting the
gates and interconnects along the most critical (or least critical)
path for up (or down) sizing is not the best choice under a
statistical modeling assumption.

IV. CONCEPT OF STATISTICAL TIMING SENSITIVITY

In this section, we mathematically define various statistical
timing sensitivities and theoretically prove the equivalence
between sensitivity and probability.

A. Path Sensitivity

In nominal timing analysis, the critical path is of great
interest because it uniquely determines the maximal circuit
delay. If the delay of the critical path is increased (or decreased)
by a small perturbation δ → 0, the maximal circuit delay is
correspondingly increased (or decreased) by δ. Therefore, given
the maximal circuit delay D in (13), the relation between
D and the individual path delay DPi can be mathematically
represented as the path sensitivity

SPath
Pi =

∂D

∂DPi
=

{
1, (If Pi is critical)
0, (Otherwise).

(14)

From the sensitivity point of view, a critical path is important
because it has nonzero sensitivity and all other noncritical
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Fig. 4. Path sensitivity in (16) is defined by a small perturbation δ → 0
on E(DPi) while keeping all high-order central moments {E{[DPi −
E(DPi)]

n}; n = 2, 3, . . .} unchanged.

paths have zero sensitivity. The maximal circuit delay can be
changed if and only if the critical path delay is changed. This
is the underlying reason why the critical path is important for
timing optimization. It is the sensitivity, instead of the critical
path itself, that provides an important criterion to guide timing
optimization. A path is more (or less) important if it has a larger
(or smaller) path sensitivity.

In statistical timing analysis, all path delays are random
variables and, therefore, can be characterized by their moments
[28]. The relation between the maximal circuit delay D and the
individual path delay DPi can be represented by a multidimen-
sional multioutput function that maps the moments of DPi to
the moments of D



E(DPi)
E
{

[DPi − E(DPi)]
2
}

E
{

[DPi − E(DPi)]
3
}

...


 →




E(D)
E
{

[D − E(D)]2
}

E
{

[D − E(D)]3
}

...


 .

(15)

In general, it is possible to define the sensitivity between any
mth-order moment of D and nth-order moment of DPi, where
m, n ∈ {1, 2, . . .}. In this paper, we define the path sensitivity
by the first-order moments as (16), shown at the bottom of
the page.

There are two important clarifications that must be made for
the path sensitivity in (16). First, the function in (15) depends on
multiple variables: E(DPi) and {E{[DPi − E(DPi)]n};n =
2, 3, . . .}. When we change E(DPi) by δ → 0 to calculate
the partial derivative in (16), we should keep all other in-
put variables, i.e., all high-order central moments {E{[DPi −
E(DPi)]n};n = 2, 3, . . .}, unchanged. In other words, such a
perturbation only shifts the probability distribution by a small
amount δ, whereas the shape of the distribution (determined
by all high-order central moments) is not changed, as shown
in Fig. 4. Second, the perturbation of δ in (16) is defined
mathematically. It only changes DPi and does not impact
{DPj ; j �= i}. This is different from a perturbation that is
physically applied to an arc delay or a process parameter. Such
a physical perturbation can concurrently change the delays of
multiple paths. These two clarifications are also applicable to
other statistical timing sensitivities defined in this section.

The path sensitivity in (16) has several important properties
that are summarized by the following theorems.
Theorem 1: The path sensitivity in (16) satisfies∑

i

SPath
Pi = 1. (17)

Theorem 2: Given the maximal circuit delay
D = MAX(DP1,DP2, . . .) where DPi is the delay of
the ith path, if the probability P [DPi = MAX(DPj ; j �= i)]
is equal to 0, then the path sensitivity in (14) is equal to the
probability that the path Pi is critical, i.e.,

SPath
Pi =P (DPi ≥ DP1 & DPi ≥ DP2 & · · ·). (18)

The detailed proofs of Theorems 1 and 2 can be found in
the Appendix. Theorem 2 relies on the assumption P [DPi =
MAX(DPj ; j �= i)] = 0. This assumption is valid if any two
paths in the circuit are not exactly identical. This conclusion
can be summarized by the following Theorem 3 that is formally
proven in the Appendix.
Theorem 3: Let DPi be the delay of the ith path. The proba-

bility P [DPi = MAX(DPj ; j �= i)] = 0 for any {i = 1, 2, . . .}
if the probability P (DPi = DPj) = 0 for any i �= j.

If DPi and DPj are two continuous random variables and
they are not fully correlated, the probability P (DPi = DPj)
is equal to 0. In most practical applications, path delays are
impacted by both interdie and intradie variations. Even if two
path delays have the same mean and variance, they often depend
on different intradie variations due to the location difference
and, therefore, are not fully correlated.

B. Arc Sensitivity

In nominal timing optimization, the gates and interconnects
along the critical path are important, because the maximal
circuit delay is sensitive to these gate/interconnect delays.
Following this observation, the importance of a given gate or
interconnect can be assessed by the following arc sensitivity:

SArc
Ai =

∂D

∂DAi
=

∑
k

∂D

∂DPk
· ∂DPk

∂DAi
=

∑
k

SPath
Pk · ∂DPk

∂DAi

=
{

1, (Ai is on the critical path)
0, (Otherwise)

(19)

where D is the maximal circuit delay defined in (13), DAi

denotes the gate/interconnect delay associated with the ith arc,
and DPk represents the delay of the kth path. In (19), the path
sensitivity SPath

Pk is nonzero (i.e., equal to 1) if and only if the
kth path Pk is critical. In addition, the derivative ∂DPk/∂DAi

is nonzero (i.e., equal to 1) if and only if the ith arc Ai sits on
the kth path Pk, because the path delay DPk is equal to the sum
of all arc delays DAi’s that belong to Pk. These observations

SPath
Pi =

∂E(D)
∂E(DPi)

= lim
δ→0

E [MAX(Dp1, . . . , DPi + δ, . . .)] − E [MAX(Dp1, . . . , DPi, . . .)]
δ

(16)
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Fig. 5. Simple timing graph to illustrate the application of the proposed arc
sensitivity.

yield the conclusion that the arc sensitivity SArc
Ai is nonzero if

and only if Ai is on the critical path. The arc sensitivity explains
the reason why the gates and interconnects along the critical
path are important for timing optimization. A gate/interconnect
is more (or less) important if it has a larger (or smaller) arc
sensitivity.

The aforementioned sensitivity concept can be extended to
statistical timing analysis. In the statistical case, we define the
arc sensitivity using the first-order moments

SArc
Ai =

∂E(D)
∂E(DAi)

. (20)

The arc sensitivity in (20) has the following property.
Theorem 4: Let DPi be the delay of the ith path. If

the probability P [DPi = MAX(DPj ; j �= i)] = 0 for any {i =
1, 2, . . .}, then the arc sensitivity in (20) is equal to the
following:

SArc
Ai =

∑
Ai∈Pk

SPath
Pk . (21)

The detailed proof of Theorem 4 can be found in the
Appendix. Remember that SPath

Pk is equal to the probability
that the kth path Pk is critical (see Theorem 2). Therefore,
Theorem 4 implies the important fact that the arc sensitivity
defined in (20) is exactly equal to the probability that an arc
sits on the critical path.

The arc sensitivity in (20) provides an effective criterion
to select the most important gates and interconnects for up-
/downsizing. Roughly speaking, for statistical timing optimiza-
tion, the gates and interconnects with large arc sensitivities are
critical to the maximal circuit delay and, in general, should
be upsized to reduce delay, whereas the others with small arc
sensitivities should be downsized to save area and/or power.
Next, using the concept of arc sensitivity, we explain the reason
why repeatedly selecting the gates and interconnects along the
most critical (or least critical) path for up (or down) sizing can
be ineffective in the statistical case.

Consider a simple timing graph including three paths, as
shown in Fig. 5. Assume that the path sensitivity SPath

P1 =
SPath

P2 = 0.3 and SPath
P3 = 0.4. Therefore, P3 is the most critical

path because it has the largest path sensitivity and is most
likely to have the maximal delay. Using the traditional concept
of critical path, the arc A2 should be selected for upsizing to
reduce delay. However, according to Theorem 4, it is easy to
verify that SArc

A1 = SPath
P1 + SPath

P2 = 0.6 and SArc
A2 = SPath

P3 =
0.4. The arc A1 has a more significant impact on the maximal

circuit delay and should be selected for upsizing, although it
does not sit on the most critical path. In this example, using
the traditional concept of critical path selects the wrong arc,
because it does not consider the nonzero path sensitivities of
other less critical paths. These nonzero sensitivities make it
possible that changing an arc delay can change the maximal
circuit delay through multiple paths. In Fig. 5, the arc A1 can
change the maximal circuit delay through two paths P1 and P2,
whereas the arc A2 can change the maximal circuit delay only
through one path P3. Therefore, the arc A1 eventually becomes
more critical than A2, although neither P1 nor P2 is the most
critical path.

C. Node Sensitivity

The nominal and statistical node sensitivities can be, respec-
tively, defined as

SNode
V i =

∂D

∂ATV i

=
∑

k

∂D

∂DPk
· ∂DPk

∂ATV i

=
∑

k

SPath
Pk · ∂DPk

∂ATV i

=
{

1, (Vi is on the critical path)
0, (Otherwise)

(22)

SNode
V i =

∂E(D)
∂E(ATV i)

(23)

where D is the maximal circuit delay given in (13), ATV i

denotes the arrival time at the ith node, and DPk represents
the delay of the kth path.

The node sensitivities in (22) and (23) are similar to the
arc sensitivities defined in (19) and (20). Following the same
reasoning of Theorem 4, we can prove that the statistical node
sensitivity in (23) is exactly equal to the probability that a node
sits on the critical path. This conclusion can be formally stated
as the following Theorem 5. The detailed proof of Theorem 5
can be found in the Appendix.
Theorem 5: Let DPi be the delay of the ith path. If

the probability P [DPi = MAX(DPj ; j �= i)] = 0 for any {i =
1, 2, . . .}, then the node sensitivity in (23) is equal to the
following:

SNode
V i =

∑
V i∈Pk

SPath
Pk . (24)

D. Yield Sensitivity

We define the yield sensitivities for paths, arcs, and nodes

SYPath
Pi =

∂Yield
∂E(DPi)

(25)

SYArc
Ai =

∂Yield
∂E(DAi)

(26)

SYNode
V i =

∂Yield
∂E(ATV i)

. (27)
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The yield sensitivities in (25)–(27) quantitatively model how
the parametric timing yield changes if E(DPi), E(DAi), or
E(ATV i) is changed. Note that, due to the nonlinearity of the
MAX(•) operation, a small perturbation in E(DPi), E(DAi),
or E(ATV i) not only changes the mean value of the maximal
circuit delay D but also changes its variance. Whereas such
a variance change is ignored by the sensitivities defined in
Sections IV-A–C, it can be captured by the yield sensitivities
in (25)–(27).

E. High-Order Sensitivity

The aforementioned sensitivity concept can be extended to
high order. One important application of high-order sensitivity
is the quadratic MAX(•) approximation proposed in [24].

For statistical timing analysis, the nonlinear MAX(•) op-
erator can be approximated as a linear function in (6), where
the linear coefficients α and β are determined by the tightness
probabilities in (8) and (9). Given the equivalence between
probability and sensitivity proven by Theorem 2, the tight-
ness probabilities in (8) and (9) are equal to the first-order
sensitivities

α = PROB(x ≥ y) =
∂E [MAX(x, y)]

∂E(x)
(28)

β = PROB(y ≥ x) =
∂E [MAX(x, y)]

∂E(y)
. (29)

Although the MAX(•) operator is not analytical (i.e., does
not have continuous derivatives), it can be statistically ap-
proximated as the form of (6), (28) and (29) that is similar
to the traditional Taylor expansion. Therefore, such a linear
approximation is referred to as the first-order statistical Taylor
expansion in [24].

The aforementioned statistical Taylor expansion can be ex-
tended to the second order to achieve higher approximation
accuracy. Consider the simple example MAX(0, z) where z
is a zero-mean random variable. The second-order statistical
expansion can be expressed as follows:

MAX(0, z)=0.5 · ∂2E [MAX(0, z)]
∂ [E(z)]2

· z2

+
∂E [MAX(0, z)]

∂ [E(z)]
· z + CMAX(0,z). (30)

The details of the quadratic MAX(•) approximation is beyond
the scope of this paper and can be found in [24].

F. Summary

The proposed sensitivity framework has three unique
properties.

1) Distribution-independent. Our discussions do not rely
on any specific probability distribution to model the
gate/interconnect delays and the arrival times.

2) Correlation-aware. Our proposed sensitivity framework
is not restricted to any assumption of statistical indepen-
dence, and it can handle correlated arrival times.

3) Computation-efficient. The proposed statistical timing
sensitivities can be efficiently computed by a single
breadth-first graph traversal, as will be demonstrated in
Section V.

V. COMPUTATION OF STATISTICAL TIMING SENSITIVITY

In this section, we first develop the sensitivity equations
for two atomic operations: SUM(•) and MAX(•). Then, we
show how to propagate the sensitivities throughout a timing
graph by using a single breadth-first graph traversal. Finally, we
discuss the incremental analysis algorithm to quickly update the
statistical timing and sensitivity information after changes to a
circuit are made.

We assume that all gate/interconnect delays and arrival times
are approximated as normal distributions. Such an assumption
facilitates an efficient sensitivity computation, even though our
proposed sensitivity framework is distribution-independent.

A. Atomic Operations

Because multivariable operations can be broken down into
multiple two-variable cases, the remainder of this section
focuses on the sensitivity computation for the SUM(•) and
MAX(•) of two random variables, i.e., z = x + y and z =
MAX(x, y) where x and y are approximated as the linear
models in (3) and (4) and z is similarly approximated as a linear
function

z = BT
z · ∆ε + Cz =

N∑
i=1

Bzi · ∆εi + Cz. (31)

Given the operation z = x + y or z = MAX(x, y), we define
the sensitivity matrix Qz←x as follows:

Qz←x =




∂Cz/∂Cx ∂Cz/∂Bx1 · · · ∂Cz/∂BxN

∂Bz1/∂Cx ∂Bz1/∂Bx1 · · · ∂Bz1/∂BxN

...
...

...
...

∂BzN/∂Cx ∂BzN/∂Bx1 · · · ∂BzN/∂BxN


 .

(32)

The sensitivity matrix Qz←y can be similarly defined.
The sensitivity matrix in (32) provides the quantitative

information on how much the coefficients Cz or {Bzi; i =
1, 2, . . . , N} will be changed if there is a small perturbation on
Cx or {Bxi; i = 1, 2, . . . , N}. Next, we derive the mathemat-
ical formulas of the sensitivity matrices for both SUM(•) and
MAX(•) operations.

For the SUM(•) operation z = x + y, it is easy to verify that

Cz = Cx + Cy (33)

Bzi = Bxi + Byi (i = 1, 2, . . . , N). (34)

Therefore, the sensitivity matrix Qz←x is an identity matrix.
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For the MAX(•) operation z = MAX(x, y), it can be
proven that

∂Cz

∂Cx
= Φ(β) (35)

∂Cz

∂Bxi
=

∂Bzi

∂Cx
=

ϕ(β) · (Bxi − Byi)
α

(i = 1, . . . , N) (36)
∂Bzi

∂Bxi
= Φ(β) − β · ϕ(β) · (Bxi − Byi)2

α2

(i = 1, . . . , N) (37)
∂Bzi

∂Bxj
= − β · ϕ(β) · (Bxi − Byi) · (Bxj − Byj)

α2
 i = 1, . . . , N

j = 1, . . . , N
i �= j


 (38)

where ϕ(•) and Φ(•) are the probability density function (PDF)
and the cumulative distribution function (CDF) of the standard
normal distribution N(0, 1), respectively, and the coefficients α
and β are defined by the following:

α =

√√√√ N∑
i=1

(Bxi − Byi)2 (39)

β =
Cx − Cy

α
. (40)

Equations (35)–(40) can be derived by directly following the
mathematical equations in [26]. The sensitivity matrix Qz←y

can be similarly calculated because both SUM(•) and MAX(•)
are symmetric.

Finally, it is worth mentioning that the sensitivity matrix
defined by (35)–(40) is an approximation for the MAX(•)
operation, because a simple linear function is used in (31) to
approximate the nonlinear operation z = MAX(x, y). It can
further be shown that, when a multivariable MAX(•) is broken
down into multiple two-variable operations, the approximation
error depends on the ordering of these two-variable operations
[25]. More details on this ordering issue are beyond the scope
of this paper and will be considered in our future research.

B. Sensitivity Propagation

Once the atomic operations are available, they can be applied
to propagate the sensitivity matrices throughout a timing graph.
Next, we use the simple timing graph in Fig. 1 as an example to
illustrate the key idea of sensitivity propagation.

1) Start from the MAX(•) operation at the sink node, i.e.,
D = MAX[AT(f) + D(f, sink), AT(g) + D(g, sink)]
where D denotes the arrival time at the sink node (i.e., the
maximal circuit delay), AT(i) represents the arrival time
at node i, and D(i, j) stands for the delay of the arc 〈i, j〉.
Compute the sensitivity matrices QD←[AT(f)+D(f,sink)]

and QD←[AT(g)+D(g,sink)] using (35)–(38).
2) Propagate QD←[AT(f)+D(f,sink)] to the node f through the

arc 〈f, sink〉. Based on the chain rule of derivatives

QD←AT(f)=QD←[AT(f)+D(f,sink)] ·Q[AT(f)+D(f,sink)]←AT(f)

and

QD←D(f,sink) = QD←[AT(f)+D(f,sink)]

· Q[AT(f)+D(f,sink)]←D(f,sink).

Q[AT(f)+D(f,sink)]←AT(f) and Q[AT(f)+D(f,sink)]←D(f,sink)

are two identity matrices due to the SUM(•) operation.
3) Similarly, propagate QD←[AT(g)+D(g,sink)] to the node

g through the arc 〈g, sink〉. Determine QD←AT(g) and
QD←D(g,sink).

4) Propagate QD←AT(f) and QD←AT(g) to the node e, yield-
ing QD←D(e,f) = QD←AT(f), QD←D(e,g) = QD←AT(g),
and QD←AT(e) = QD←AT(f) + QD←AT(g). Note that the
outdegree of the node e is equal to two. Therefore, the
sensitivity matrices QD←AT(f) and QD←AT(g) should be
added together at the node e to compute QD←AT(e), based
on the chain rule of derivatives. Its physical meaning
is that a small perturbation on AT(e) can change the
maximal circuit delay D through two different paths
{e → f → sink} and {e → g → sink}.

5) Continue propagating the sensitivity matrices until the
source node is reached.

After the sensitivity propagation is complete, the sensitivity
matrix QD←D(i,j) (or QD←AT(V i)) between the maximal cir-
cuit delay D and any arc delay D(i, j) (or node arrival time
AT(Vi)) is determined. The statistical timing sensitivities can
be easily computed by a quick postprocessing. For example, the
arc sensitivity defined in (20) and the node sensitivity defined
in (23) are the (1, 1)th element of QD←D(i,j) and QD←AT(V i),
respectively

SArc
〈i,j〉 = [1 0 · · ·] · QD←D(i,j) · [1 0 · · ·]T (41)

SNode
V i = [1 0 · · ·] · QD←AT(V i) · [1 0 · · ·]T. (42)

Calculating the yield sensitivities in (26) and (27) is more
comprehensive because the parametric timing yield is deter-
mined by not only the mean value of the maximal circuit delay
D but also its variance.

After the statistical timing analysis is complete, D is approx-
imated as the following linear model that is similar to (3) and
(4) and (31):

D = BT
D · ∆ε + CD =

N∑
i=1

BDi · ∆εi + CD. (43)

Because D is the linear combination of multiple normal distri-
butions, it is also normal and its mean and standard deviations
are, respectively, determined by the following [30]:

µD =CD (44)

σD =

√√√√ N∑
i=1

B2
Di . (45)

Therefore, the CDF of D is equal to the following:

cdfD(t) = Φ
(

t − µD

σD

)
(46)
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Fig. 6. Incremental statistical timing and sensitivity analysis.

where Φ(•) stands for the CDF of the standard normal distrib-
ution N(0, 1).

Assume that the timing constraint is specified by the
following:

D ≤ DSpec (47)

and therefore, the parametric timing yield is equal to the
following:

Yield=P (D ≤ DSpec)=cdfD(DSpec)=Φ
(

DSpec − µD

σD

)
.

(48)

We further assume that x denotes the arc delay or the arrival
time of interest and that it is approximated as the linear model
in (3). Hence, the yield sensitivity can be calculated as follows:

∂Yield
∂E(x)

=
∂

∂E(x)
Φ
(

DSpec − µD

σD

)
. (49)

Based on the chain rule of derivatives, we have

∂Yield
∂E(x)

= ϕ

(
DSpec − µD

σD

)

×
[

µD − DSpec

σ3
D

·
N∑

i=1

BDi ·
∂BDi

∂Cx
− 1

σD
· ∂CD

∂Cx

]
(50)

where ϕ(•) represents the PDF of the standard normal distribu-
tion N(0, 1) and the derivatives {∂BDi/∂Cx; i = 1, 2, . . . , N}
and ∂CD/∂Cx are the elements of the sensitivity matrix QD←x

that is extracted from the sensitivity propagation.

C. Incremental Analysis

The complete statistical timing and sensitivity analysis con-
sists of one forward arrival time propagation from the source
node to the sink node and one backward sensitivity propagation
from the sink node to the source node. It would be quite
expensive, if not impossible, to run such a complete analysis
for multiple times within an optimization loop. Therefore, an
incremental analysis technique is required to quickly update the
statistical timing and sensitivity information after local changes
to a circuit are made.

Once a logic cell is modified for timing optimization, the
arrival time and the timing sensitivity of a number of nodes are
changed. Taking Fig. 6 as an example, if we size logic cell A,
the input capacitance, delay, and output slew of cell A are all

Fig. 7. Circuit schematic of a simple digital circuit.

TABLE I
ARC SENSITIVITY VALUES FOR THE SIMPLE DIGITAL CIRCUIT (SHOWN

ARE THE ARCS WITH NONZERO SENSITIVITIES ONLY)

changed. Due to the input-capacitance change of cell A, the
delay and output slew of its fan-in cell (i.e., cell B in Fig. 6) are
also changed. Therefore, the arrival time of the fan-out cone of
cell B (i.e., cone I in Fig. 6) must be updated, and the timing
sensitivity of the fan-in cone of all affected nodes (i.e., cone II
in Fig. 6) must also be updated.

VI. NUMERICAL EXAMPLES

We demonstrate the efficacy of the proposed statistical timing
sensitivity analysis using several circuit examples. All cir-
cuits are implemented in either 0.13-µm or 90-nm commercial
CMOS technologies. Both interdie and intradie variations on
VTH, TOX, W , and L are considered. The probability dis-
tribution and the correlation information of these variations
are specified in the process design kit from the foundry. All
numerical simulations are run on a 2.6-GHz computer with
1-GB memory.

A. Simple Example

Shown in Fig. 7 is a simple digital circuit that consists of
nine gates and two D-flip-flops. Such a simple example allows
us to intuitively illustrate several key concepts of the proposed
sensitivity analysis.

Table I shows the arc sensitivity values computed by the
proposed sensitivity analysis and a Monte Carlo simulation
with 104 samples. The Monte Carlo simulation repeatedly
draws random samples and counts the probability that an arc
sits on the critical path. Note that the largest arc sensitivity error
in Table I is only 1.6%. Such a high accuracy demonstrates that
the normal distribution assumption applied to our sensitivity
analysis does not incur significant error in this example.

As shown in Table I, 〈I3, N2〉 is the arc that has the
largest sensitivity value. This is because 〈I3, N2〉 sits on the
three longest paths: {I3 → N2 → N3 → N5}, {I3 → N2 →
N3 → N6}, and {I3 → N2 → N4 → N6}. Therefore, a small
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TABLE II
STATISTICAL SENSITIVITY ANALYSIS ERROR

FOR ISCAS’85 BENCHMARK CIRCUITS

TABLE III
STATISTICAL TIMING AND SENSITIVITY ANALYSIS

COST FOR ISCAS’85 BENCHMARK CIRCUITS

perturbation on the delay of 〈I3, N2〉 can significantly change
the maximal circuit delay through these three paths. Note that,
although such a multiple-path effect cannot be easily identified
by a nominal timing analysis, it is successfully captured by the
proposed statistical sensitivity analysis.

In addition, it is worth mentioning that the arc 〈I2, N2〉 in
Fig. 7 has zero sensitivity, because the NAND gate is asymmetric
and the arc delay D(I3, N2) is larger than D(I2, N2). Even
with process variations, D(I3, N2) still dominates, because
D(I2, N2) and D(I3, N2) are from the same gate and they are
strongly correlated.

B. ISCAS’85 Benchmark Circuits

1) Accuracy and Speed: We conducted statistical timing
and sensitivity analysis for the ISCAS’85 benchmark circuits.
Table II shows the minimal, average, and maximal sensitivity
errors of all timing arcs. These errors are compared against a
Monte Carlo simulation with 104 samples. Note that the maxi-
mal sensitivity error in Table II is less than 3.5% for all circuits.
In addition, the proposed sensitivity analysis achieves about
4000 times speedup over the Monte Carlo simulation, as shown
in Table III. To fully understand the computational complexity,
Table III also lists the number of independent random variables
(after PCA) to model both interdie and intradie variations. It is
important to note that the proposed statistical sensitivity analy-
sis is slightly cheaper than the statistical timing analysis in this
example. The reason is that the proposed sensitivity analysis
only involves simple matrix operations, whereas the statistical
timing analysis spends substantial computational time on delay

Fig. 8. (a) Cumulative plot of the nominal slacks for ISCAS’85 C7552.
(b) Cumulative plot of the statistical sensitivities for ISCAS’85 C7552.

calculation (e.g., computing the effective capacitance Ceff for
interconnects via a number of numerical iterations [27]).
2) Slack and Sensitivity Wall: One important problem in

nominal timing optimization is the steep slack wall discussed in
[23]. After the nominal timing optimization is complete, many
paths have similar delays and are equally critical. We nominally
optimized the circuit C7552 and plotted the optimized slacks in
Fig. 8(a). (Note that Fig. 8(a) is plotted for “-Slack”.) The steep
slack wall in Fig. 8(a) implies that a great number of nodes
have close-to-zero slacks and, therefore, are equally important
in nominal timing optimization.

Next, we ran a statistical sensitivity analysis for the same
circuit and plotted the arc sensitivities in Fig. 8(b). Note that the
sensitivity wall in Fig. 8(b) is flat. In other words, after process
variations are considered, only a small number of arcs dominate
the overall timing performance. Although these arcs cannot be
identified by nominal timing analysis, they are captured by the
proposed statistical sensitivity analysis.
3) Statistical Timing Optimization: We further incorporated

the proposed sensitivity analysis into an optimization engine
for statistical gate sizing. Because timing optimization is not the
major focus of this paper, we only implemented a simple select-
and-conquer approach. Namely, we select a small number of
the most and least critical cells based on yield sensitivities. The
most critical cells are upsized to reduce delay, and the least
critical cells are downsized to reduce area and/or power.

For testing and comparison, we applied both corner-based
optimization and statistical optimization to all ISCAS’85
benchmark circuits. In both optimizations, the objective is to
minimize the total gate area with a given timing constraint.
Table IV shows the total gate area after the optimizations are
complete. In this example, the statistical timing optimization
achieves up to 27.8% area reduction compared with the corner-
based method.

C. Industrial Design Examples

1) Statistical Sensitivity Analysis: As a final example, we
tested the proposed sensitivity analysis on three large industrial
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TABLE IV
NORMALIZED GATE AREA AFTER TIMING OPTIMIZATION

FOR ISCAS’85 BENCHMARK CIRCUITS

TABLE V
STATISTICAL TIMING AND SENSITIVITY ANALYSIS COST

FOR LARGE INDUSTRIAL DESIGN EXAMPLES

examples. Table V shows the circuit size (i.e., the number
of cells, the number of pins, and the number of independent
random variables to model both interdie and intradie variations)
and the computational cost for these examples. The Monte
Carlo simulation is too expensive for these large-size examples
and, therefore, is not computationally feasible. As shown in
Table V, the computational cost of the proposed sensitivity
analysis linearly scales as the circuit size increases (up to
1.3M pins).
2) Statistical Timing Optimization: We further ran a statis-

tical timing optimization for design A that contains 16K cells.
The proposed yield sensitivity is utilized as a criterion to select
the most critical cells for upsizing and the least critical cells for
downsizing. The statistical timing optimization is formulated
to minimize the total gate area with a given timing constraint.
For the initial design, the normalized gate area is 803 758. The
gate area is reduced to 712 221 (11.39% difference) by the
statistical timing optimization, whereas the parametric timing
yield is guaranteed to be 99%.

Fig. 9 shows the histogram of the mean value of all node
slacks before and after the statistical timing optimization is
applied. It is apparent that our timing optimization pushes
the slack values toward zero to reduce area. However, these
slack changes all happen at noncritical nodes, and therefore, no
parametric timing yield is surrendered. It is also interesting to
note that a number of slack values in Fig. 9(c) are increased
after optimization. We believe that it is caused by the load
dependence of the delay. Namely, when a cell is downsized to
save area, its input capacitance is reduced, which can speed up
the driving cell and reduce the total delay.

VII. CONCLUSION

In this paper, we define the statistical timing sensitivities
for paths, arcs, and nodes. Our theoretical analysis proves a
direct link between probability and sensitivity. An efficient

Fig. 9. Node slacks for industrial design A. (a) Histogram of the slack mean
value of all nodes before statistical timing optimization. (b) Histogram of the
slack mean value of all nodes after statistical timing optimization. (c) Histogram
of the slack shift of all nodes.

algorithm is developed for fast sensitivity computation. The
proposed sensitivity analysis has a linear complexity in circuit
size and offers an incremental analysis capability. Our numeri-
cal examples demonstrate that the proposed sensitivity analysis
yields accurate results and achieves 4000 times speedup over
the Monte Carlo simulation with 104 samples.

The proposed sensitivity framework is further incorporated
into an optimization engine for statistical gate sizing. Our
optimization examples demonstrate that the proposed timing
sensitivity can be used to guide statistical gate sizing. Even if
a simple sizing algorithm is utilized, the proposed sensitivity-
based optimization yields promising results.

APPENDIX

Proof of Theorem 1

Given a small perturbation δ on the mean values of all paths,
the mean value of the maximal circuit delay is equal to the
following:

E [MAX(DP1 + δ,DP2 + δ, . . .)]

= E [MAX(DP1,DP2, . . .)] + δ. (51)

According to the path sensitivity definition in (16), the mean
value of the maximal circuit delay can also be represented as
follows:

E [MAX(DP1 + δ,DP2 + δ, . . .)]

= E [MAX(DP1,DP2, . . .)] +
∑

i

δ · SPath
Pi + O(δ2) (52)
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where O(δ2) is a high-order (order ≥ 2) polynomial of δ.
Comparing (51) and (52) yields

δ = δ ·
∑

i

SPath
Pi + O(δ2). (53)

Equation (53) is valid for any sufficiently small δ. Therefore,
the first-order coefficient of δ at the left-hand side must equal
the first-order coefficient of δ at the right-hand side, yielding

1 =
∑

i

SPath
Pi . (54)

Equation (54) proves Theorem 1.
Studying (53), we would notice another interesting property

that the high-order polynomial O(δ2) is equal to 0. In other
words, there is no high-order term in the Taylor expansion (52).
This observation is consistent with the fact that the function
E[MAX(DP1 + δ,DP2 + δ, . . .)] is actually linear in δ, as
shown in (51).

Proof of Theorem 2

Let APi = MAX(DPj ; j �= i) and we have

SPath
Pi =

∂E [MAX(DPi, APi)]
∂E(DPi)

(55)

P (DPi ≥ DP1 & DPi ≥ DP2 & · · ·)
= P (DPi ≥ APi). (56)

The operation MAX(DPi, APi) can be rewritten as follows:

MAX(DPi, APi) = MAX(DPi − APi, 0) + APi. (57)

Substituting (57) into (55) yields

SPath
Pi =

∂E [MAX(DPi − APi, 0)]
∂E(DPi)

+
∂E(APi)
∂E(DPi)

. (58)

The second term in (58) is independent of E(DPi), and there-
fore, its derivative to E(DPi) equals zero

∂E(APi)
∂E(DPi)

= lim
δ→0

E [MAX(DPj ; j �= i)] − E [MAX(DPj ; j �= i)]
E(DPi + δ) − E(DPi)

= lim
δ→0

0
δ

= 0. (59)

Substituting (59) into (58) yields

SPath
Pi =

∂E [MAX(DPi − APi, 0)]
∂E(DPi)

. (60)

Given a small perturbation δ → 0 on the mean value of
DPi, (60) yields (61), shown at the bottom of the page. As-
sume that pdf(DPi, APi) is the joint PDF for DPi and APi,
yielding

SPath
Pi =

∫∫
lim
δ→0

1
δ
· [MAX(DPi − APi + δ, 0)

−MAX(DPi − APi, 0)]

× pdf(DPi, APi) · dDPi · dAPi (62)

where

lim
δ→0

1
δ
[MAX(DPi − APi + δ, 0) − MAX(DPi − APi, 0)]

=




1, (DPi > APi)
1, (DPi = APi & δ > 0)
0, (DPi = APi & δ < 0)
0, (DPi < APi).

(63)

Therefore, given the assumption that the probability P (DPi =
APi) is zero, the following integration is equal to zero:

∣∣∣∣
∫∫

DP i=AP i

lim
δ→0

1
δ

[MAX(DPi − APi + δ, 0)

−MAX(DPi − APi, 0)]

× pdf(DPi, APi) · dDPi · dAPi

∣∣∣∣
≤

∫∫
DP i=AP i

pdf(DPi, APi) · dDPi · dAPi

= P (DPi = APi) = 0. (64)

Substituting (63) and (64) into (61) yields

SPath
Pi =

∫∫
DP i>AP i

pdf(DPi, APi) · dDPi · dAPi

=P (DPi > APi) = P (DPi ≥ APi). (65)

In (65), P (DPi ≥ APi) = P (DPi > APi) because P (DPi =
APi) = 0. Substituting (65) into (56) proves the result in (18).

SPath
Pi = lim

δ→0

E [MAX(DPi − APi + δ, 0)] − E [MAX(DPi − APi, 0)]
E (DPi + δ) − E(DPi)

= lim
δ→0

E [MAX(DPi − APi + δ, 0)] − E [MAX(DPi − APi, 0)]
δ

(61)
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SArc
Ai =

∂
{∫

[MAX(DP1,DP2, . . .) · pdf(DP1,DP2, . . .)] · dDP1 · dDP2 · · ·
}

∂E(DAi)

=
∫ [

∂MAX(DP1,DP2, . . .)
∂E(DAi)

· pdf(DP1,DP2, . . .)
]
· dDP1 · dDP2 · · · (67)

SArc
Ai =

∫ [ ∑
Ai∈Pk

∂MAX(DP1,DP2, . . .)
∂E(DPk)

· pdf(DP1,DP2, . . .) · dDP1 · dDP2 · · ·
]

=
∑

Ai∈Pk

∂
∫

[MAX(DP1,DP2, . . .) · pdf(DP1,DP2, . . .)] · dDP1 · dDP2 · · ·
∂E(DPk)

=
∑

Ai∈Pk

∂E [MAX(DP1,DP2, . . .)]
∂E(DPk)

(69)

Proof of Theorem 3

Based on probability theorem [30], we have

P [DPi = MAX(DPj ; j �= i)]

=
∑
j �=i

P [DPi = DPj & DPj ≥ MAX(DPk; k �= i, k �= j)]

≤
∑
j �=i

P (DPi = DPj)

= 0. (66)

Equation (66) proves Theorem 3.

Proof of Theorem 4

Assume that pdf(DP1,DP2, . . .) is the joint PDF of all path
delays, yielding (67), shown at the top of the page. Theoreti-
cally, the MAX(•) function is not differentiable at the locations
where DPi = MAX(DPj ; j �= i). However, as shown in (64),
the integration in (67) is equal to zero at these singular points,
given the assumption that P [DPi = MAX(DPj ; j �= i)] = 0.
Therefore, these singular points have no impact on the final
value of SArc

Ai and can be completely ignored

SArc
Ai =

∫ [∑
k

∂MAX(DP1,DP2, . . .)
∂E(DPk)

· ∂E(DPk)
∂E(DAi)

×pdf(DP1,DP2, . . .) · dDP1 · dDP2 · · ·
]
. (68)

In (68), the derivative ∂DPk/∂E(DAi) is nonzero (equal to 1)
if and only if the ith arc Ai sits on the kth path Pk. Therefore,
we have (69), shown at the top of the page. Substituting (13)
and (16) into (69) yields the result in (21).

Proof of Theorem 5

Theorems 4 and 5 are similar. Because we already gave the
detailed proof for Theorem 4, we only show the major steps to
prove Theorem 5 in this section.

Assume that pdf(DP1,DP2, . . .) is the joint PDF of all path
delays, yielding

SNode
V i =

∫ [
∂MAX(DP1,DP2, . . .)

∂E(ATV i)
· pdf(DP1,DP2, . . .)

]
× dDP1 · dDP2 · · ·

=
∫ [∑

k

∂MAX(DP1,DP2, . . .)
∂E(DPk)

· ∂E(DPk)
∂E(ATV i)

× pdf(DP1,DP2, . . .) · dDP1 · dDP2 · · ·
]

=
∑

V i∈Pk

∂E [MAX(DP1,DP2, . . .)]
∂E(DPk)

. (70)

Substituting (13) and (16) into (70) yields the result in (24).
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