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Overview 

 Stochastic Optimization 
 Simulated annealing 
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Local Optimization 

 All optimization algorithms in early lectures assumes “local 
convexity” for cost function and constraint set 
 Gradient method 
 Newton method 
 Conjugate gradient method 
 Interior point method 

 
 Global convergence cannot be guaranteed if the actual cost 

function or constraint set is non-convex 
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Filter Design Example 

 Design a band-stop filter to remove power supply noise 

Filter 1 Filter 2 Input 
Signal 

Output 
Signal 

Required frequency response f 

|H(f)| 

60±5Hz 120±5Hz 
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Filter Design Example 

 Design a band-stop filter to remove power supply noise 
 

Filter 1 Filter 2 Input 
Signal 

Output 
Signal 

Filter 1 f 

|H(f)| 

Filter 2 f 

|H(f)| 
OR Filter 1 f 

|H(f)| 

Filter 2 f 

|H(f)| 
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Filter Design Example 

 Design a band-stop filter to remove power supply noise 
 

Filter 1 Filter 2 Input 
Signal 

Output 
Signal 

Stop band of filter 1 

St
op

 b
an

d 
of

 fi
lte

r 2
 

60±5Hz 

12
0±

5H
z 

120±5Hz 

60
±5

Hz
 

Feasible 
set 

Feasible set is not 
continuous in this example! 
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Stochastic Optimization 

 Stochastic optimization is another useful technique for 
nonlinear programming 
 Randomized algorithm (not deterministic) 
 Better convergence than local optimization 
 More expensive in computational cost 

 
 Several important algorithms for stochastic optimization 

 Simulated annealing (focus of this lecture) 
 Genetic programming 
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Simulated Annealing 

 Unconstrained optimization 
 
 

 Simulated annealing: 
 Start from an initial point 
 Repeatedly consider various new solution points 
 Accept or reject some of these solution candidates 
 Converge to the optimal solution 

 

( )Xf
X

min
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Simulated Annealing 

 Unconstrained optimization 
 
 

 Simulated annealing was introduced by Metropolis in 1953 
 

 It is based on “similarities” and “analogies” with the way that 
alloys manage to find a nearly global minimum energy level 
when they are cooled slowly 
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Simulated Annealing 

 Local optimization vs. simulated annealing 
 

 Local optimization 
 Start from an initial point 
 Repeatedly consider various new solution points 
 Reduce cost function at each iteration 
 Converge to optimal solution 

 
 Simulated annealing 

 Start from an initial point 
 Repeatedly consider various new solution points 
 Accept/reject new solution using probability at each iteration 
 Converge to optimal solution 
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Simulated Annealing 

 Local optimization 

x 

f(x) 

Yes 

No 
No 

Yes 

Local optimization attempts to reduce cost 
function at each iteration 
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Simulated Annealing 

 Simulated annealing 

x 

f(x) 

Always 

Probably 
Likely 

Always 

Simulated annealing accept/reject new solution 
candidate based on probability 
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Simulated Annealing 

 Step 1: start from an initial point X = X0 & K = 0 
 Step 2: evaluate cost function F = f(XK) 
 Step 3: randomly move from XK to a new solution XK+1 

 Step 4: if f(XK+1) < F, then 
 Accept new solution 
 X = XK+1 & F = f(XK+1) 

 End if 
 Step 5: if f(XK+1) ≥ F, then 

 Accept new solution with certain probability 
 X = XK+1 & F = f(XK+1) iff rand(1) < ε 

 End if 
 Step 6: K = K + 1 & go to Step 2 

 

Help to get out of 
local minimum 

Similar to local 
optimization 
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Simulated Annealing 

 Accept/reject new solution with the probability ε 
 If f(XK+1) ≥ F, then 

 Accept new solution with certain probability 
 X = XK+1 & F = f(XK+1) iff rand(1) < ε 

 End if 

 
 Option 1 

 Constant probability, i.e., ε = 0.1 

 
 Option 2 (better than Option 1) 

 Dynamically varying probability, i.e., decreasing over time 
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Simulated Annealing 

 Accept/reject new solution with the probability ε 
 If f(XK+1) ≥ F, then 

 Accept new solution with certain probability 
 X = XK+1 & F = f(XK+1) iff rand(1) < ε 

 End if 

 
 Use Boltzmann distribution to determine the probability ε 

 
 
 
 

 TK+1 is a “temperature” parameter that gradually decreases 
 E.g., TK+1 = α⋅TK where α < 1 
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Simulated Annealing 

 Accept/reject new solution with the probability ε 
 If f(XK+1) ≥ F, then 

 Accept new solution with certain probability 
 X = XK+1 & F = f(XK+1) iff 

 
 

 End if 

 
 High temperature 

 Attempt to accept all new solutions even if f(XK+1) − F is large 

 
 Low temperature 

 Only accept the new solutions where f(XK+1) − F is small 
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Simulated Annealing 

 Simulated annealing is particularly developed for unconstrained 
optimization 
 

 Constrained optimization can be converted to unconstrained 
optimization using barrier method 
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Simulated Annealing 

 Simulated annealing does not guarantee global optimum 
 However, it tries to avoid a large number of local minima 
 Therefore, it often yields a better solution than local optimization 

 
 Simulated annealing is not deterministic 

 Whether accept or reject a new solution is random 
 You can get different answers from multiple runs 

 
 Simulated annealing is more expensive than local optimization 

 It is the price you must pay to achieve a better optimal solution 
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Simulated Annealing 

 Simulated annealing has been used to solve many practical 
engineering problems 
 

 A large number of implementation issues must be considered 
for practical circuit optimization problems 
 How to define optimization variable X (continuous vs. discrete)? 
 How to randomly move to a new solution? 
 Etc. 
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Example: Travelling Salesman Problem (TSP) 

 N cities are located on a 2-D map 
 

 One must visit each city once and then return to start city 
 

 Find the optimal route with minimum length 
 If all cities are visited in the order of R = {C1, C2, ..., CN}, we have 

 

 ( )
21232221 CCCCCCRf N −++−+−= 

Distance between 
C1 and C2 

Distance between 
CN and C1 
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Example: Travelling Salesman Problem (TSP) 

 Step 1: start from random route R, initial temperature T & K = 1 

 Step 2: evaluate cost function F = f(R) 
 Step 3: define new route RK by randomly swapping two cities 

 Step 4: if f(RK) < F, then 
 Accept new route 
 R = RK & F = f(RK) 

 End if 
 Step 5: if f(RK) ≥ F, then 

 Accept new solution with certain probability 
 R = RK & F = f(RK) iff rand(1) < exp{[F−f(RK)]/T} 

 End if 
 Step 6: T = αT (α < 1), K = K + 1, and go to Step 3 
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Example: Travelling Salesman Problem (TSP) 

 TSP route optimized by simulated annealing 
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Summary 

 Stochastic optimization 
 Simulated annealing 
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