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Overview 

 Stochastic Optimization 
 Simulated annealing 
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Local Optimization 

 All optimization algorithms in early lectures assumes “local 
convexity” for cost function and constraint set 
 Gradient method 
 Newton method 
 Conjugate gradient method 
 Interior point method 

 
 Global convergence cannot be guaranteed if the actual cost 

function or constraint set is non-convex 
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Filter Design Example 

 Design a band-stop filter to remove power supply noise 

Filter 1 Filter 2 Input 
Signal 

Output 
Signal 

Required frequency response f 

|H(f)| 

60±5Hz 120±5Hz 
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Filter Design Example 

 Design a band-stop filter to remove power supply noise 
 

Filter 1 Filter 2 Input 
Signal 

Output 
Signal 

Filter 1 f 

|H(f)| 

Filter 2 f 

|H(f)| 
OR Filter 1 f 

|H(f)| 

Filter 2 f 

|H(f)| 
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Filter Design Example 

 Design a band-stop filter to remove power supply noise 
 

Filter 1 Filter 2 Input 
Signal 

Output 
Signal 

Stop band of filter 1 

St
op

 b
an

d 
of

 fi
lte

r 2
 

60±5Hz 

12
0±

5H
z 

120±5Hz 

60
±5

Hz
 

Feasible 
set 

Feasible set is not 
continuous in this example! 
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Stochastic Optimization 

 Stochastic optimization is another useful technique for 
nonlinear programming 
 Randomized algorithm (not deterministic) 
 Better convergence than local optimization 
 More expensive in computational cost 

 
 Several important algorithms for stochastic optimization 

 Simulated annealing (focus of this lecture) 
 Genetic programming 
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Simulated Annealing 

 Unconstrained optimization 
 
 

 Simulated annealing: 
 Start from an initial point 
 Repeatedly consider various new solution points 
 Accept or reject some of these solution candidates 
 Converge to the optimal solution 

 

( )Xf
X

min
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Simulated Annealing 

 Unconstrained optimization 
 
 

 Simulated annealing was introduced by Metropolis in 1953 
 

 It is based on “similarities” and “analogies” with the way that 
alloys manage to find a nearly global minimum energy level 
when they are cooled slowly 
 

( )Xf
X

min
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Simulated Annealing 

 Local optimization vs. simulated annealing 
 

 Local optimization 
 Start from an initial point 
 Repeatedly consider various new solution points 
 Reduce cost function at each iteration 
 Converge to optimal solution 

 
 Simulated annealing 

 Start from an initial point 
 Repeatedly consider various new solution points 
 Accept/reject new solution using probability at each iteration 
 Converge to optimal solution 
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Simulated Annealing 

 Local optimization 

x 

f(x) 

Yes 

No 
No 

Yes 

Local optimization attempts to reduce cost 
function at each iteration 
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Simulated Annealing 

 Simulated annealing 

x 

f(x) 

Always 

Probably 
Likely 

Always 

Simulated annealing accept/reject new solution 
candidate based on probability 
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Simulated Annealing 

 Step 1: start from an initial point X = X0 & K = 0 
 Step 2: evaluate cost function F = f(XK) 
 Step 3: randomly move from XK to a new solution XK+1 

 Step 4: if f(XK+1) < F, then 
 Accept new solution 
 X = XK+1 & F = f(XK+1) 

 End if 
 Step 5: if f(XK+1) ≥ F, then 

 Accept new solution with certain probability 
 X = XK+1 & F = f(XK+1) iff rand(1) < ε 

 End if 
 Step 6: K = K + 1 & go to Step 2 

 

Help to get out of 
local minimum 

Similar to local 
optimization 
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Simulated Annealing 

 Accept/reject new solution with the probability ε 
 If f(XK+1) ≥ F, then 

 Accept new solution with certain probability 
 X = XK+1 & F = f(XK+1) iff rand(1) < ε 

 End if 

 
 Option 1 

 Constant probability, i.e., ε = 0.1 

 
 Option 2 (better than Option 1) 

 Dynamically varying probability, i.e., decreasing over time 
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Simulated Annealing 

 Accept/reject new solution with the probability ε 
 If f(XK+1) ≥ F, then 

 Accept new solution with certain probability 
 X = XK+1 & F = f(XK+1) iff rand(1) < ε 

 End if 

 
 Use Boltzmann distribution to determine the probability ε 

 
 
 
 

 TK+1 is a “temperature” parameter that gradually decreases 
 E.g., TK+1 = α⋅TK where α < 1 

( )

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Simulated Annealing 

 Accept/reject new solution with the probability ε 
 If f(XK+1) ≥ F, then 

 Accept new solution with certain probability 
 X = XK+1 & F = f(XK+1) iff 

 
 

 End if 

 
 High temperature 

 Attempt to accept all new solutions even if f(XK+1) − F is large 

 
 Low temperature 

 Only accept the new solutions where f(XK+1) − F is small 
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Simulated Annealing 

 Simulated annealing is particularly developed for unconstrained 
optimization 
 

 Constrained optimization can be converted to unconstrained 
optimization using barrier method 

( )
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Simulated Annealing 

 Simulated annealing does not guarantee global optimum 
 However, it tries to avoid a large number of local minima 
 Therefore, it often yields a better solution than local optimization 

 
 Simulated annealing is not deterministic 

 Whether accept or reject a new solution is random 
 You can get different answers from multiple runs 

 
 Simulated annealing is more expensive than local optimization 

 It is the price you must pay to achieve a better optimal solution 
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Simulated Annealing 

 Simulated annealing has been used to solve many practical 
engineering problems 
 

 A large number of implementation issues must be considered 
for practical circuit optimization problems 
 How to define optimization variable X (continuous vs. discrete)? 
 How to randomly move to a new solution? 
 Etc. 
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Example: Travelling Salesman Problem (TSP) 

 N cities are located on a 2-D map 
 

 One must visit each city once and then return to start city 
 

 Find the optimal route with minimum length 
 If all cities are visited in the order of R = {C1, C2, ..., CN}, we have 

 

 ( )
21232221 CCCCCCRf N −++−+−= 

Distance between 
C1 and C2 

Distance between 
CN and C1 
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Example: Travelling Salesman Problem (TSP) 

 Step 1: start from random route R, initial temperature T & K = 1 

 Step 2: evaluate cost function F = f(R) 
 Step 3: define new route RK by randomly swapping two cities 

 Step 4: if f(RK) < F, then 
 Accept new route 
 R = RK & F = f(RK) 

 End if 
 Step 5: if f(RK) ≥ F, then 

 Accept new solution with certain probability 
 R = RK & F = f(RK) iff rand(1) < exp{[F−f(RK)]/T} 

 End if 
 Step 6: T = αT (α < 1), K = K + 1, and go to Step 3 
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Example: Travelling Salesman Problem (TSP) 

 TSP route optimized by simulated annealing 
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Summary 

 Stochastic optimization 
 Simulated annealing 
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