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Overview 

 Random Walk 
 3-D heat equation 
 Random walk game 
 Randomized PDE solver 
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3-D Heat Equation 
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Finite Difference 

 A control volume 
 
 
 
 

 Discretize PDE at each control volume 
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Steady-State Solution 

 Generally interested only in steady state – thermal capacitance 
is not considered 
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Steady-State Solution 

 Result in a set of linear equations 
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Steady-State Solution 
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Steady-State Solution 
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Boundary Conditions 

Temperature 
is fixed at T0 

0,, TT kji = for all {i,j,k} at boundary 
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Thermal Equation 

 
 
 
 

 Linear thermal equation can be solved by many techniques 
 Gaussian elimination 
 Conjugate gradient method 
 Etc. 

 
 In this lecture, we will explore a new “random” technique to 

solve discretized PDE 
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Random Walk Game 

 Random walk game 
 A network of roads 
 A motel at each 

intersection 
 A set of homes 

 

Home 

Home 

Home 



Slide 12   

Random Walk Game 

 Start from node x 
 Walk one (randomly 

chosen) road every day 
 Each direction is  

associated with 
probability pi,j 

 Stay the night at motel y  
 Motel charges my 

 Keep going until home 
 Get reward m0 at 

each home 
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Random Walk Game 

 Problem: find the average amount of earned money in the end 
as a function of the starting node x 
 
 
 

 f(x) can be estimated by Monte Carlo analysis 
 Estimate the expected value from a number of random 

sampling points 

f(x) = E[ money earned in the end | from node x ] 
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Monte Carlo Analysis 

 
 
 

 For i = 1,2,...,M 
 Start from node x 
 Perform random walk to reach home 
 Calculate the total money earned during this walk: f(i) 

 End For 
 f(x) is estimated by: 
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Monte Carlo Analysis 

 
 
 
 
 
 
 
 
 

 Why is random walk game related to thermal analysis? 
 To understand the connection, we need to analytically model 

the game as a Markov chain 
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Markov Chain Model 

 The random walk problem can be modeled as a Markov chain 
 The transition probability from x to y is uniquely determined by 

x and y only 
 It is independent of any previous locations 

Home 

Home 

Home 

px,1 

px,2 
px,3 x 



Slide 17   

Markov Chain Model 

 Mathematically, it means: 
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Markov Chain Model 

 Linear equation for f(x) 
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Markov Chain Model 

 Linear equation for f(x) 
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Random Walk Game for 3-D Grid 

 If the road network is a 3-D grid 
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Random Walk Game for 3-D Grid 

 If the road network is a 3-D grid 
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Thermal Analysis vs. Random Walk Game 

 Both thermal analysis and random walk game can be modeled 
by similar linear equations 
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Thermal Analysis vs. Random Walk Game 

 This observation has a two-fold meaning 
 

 #1: We do not have to play random walk game by Monte Carlo 
 It can be solved deterministically based on linear equation 

 
 #2: We do not have to solve thermal analysis problem 

deterministically 
 Temperature solution can be found by Monte Carlo analysis 

(i.e., a randomized algorithm) 



Slide 24   

Random Walk for Thermal Analysis 

 Problem: find temperature at x by random walk 
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Random Walk for Thermal Analysis 

 Random walk 
 Start from node x with reward gIIx 

 Walk across one (randomly chosen) edge where each walking 
direction is associated with a probability gx, gy or gz 

 Reach node {i,j,k} and get reward gIIi,j,k 

 Keep going until reaching boundary 
 Get reward T0 at boundary 
 Calculate the total reward earned during this walk 
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Random Walk for Thermal Analysis 

 Monte Carlo analysis 
 
 
 

 For i = 1,2,...,M 
 Start from node x 
 Perform random walk to reach boundary 
 Calculate the total reward earned during this walk: f(i) 

 End For 
 Tx is estimated by: 
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Deterministic Solver vs. Random Walk 

 The efficacy of both algorithms is problem-dependent 
 

 In general, random walk is preferable if we are only interested 
in local temperature 

 
 

 We do not have to solve the complete linear equation 
 Random walk quickly tells us the temperature at “a” location x 

 
 Random walk can also be used to generate “good” pre-

conditioner for conjugate gradient method 

Tx = E[ reward earned in the end | from node x ] 
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Summary 

 Random walk 
 3-D heat equation 
 Random walk game 
 Randomized PDE solver 
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