CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

■ Principal Component Analysis (PCA)
\checkmark Correlation decomposition
v Dimension reduction

Monte Carlo Analysis

■ Monte Carlo analysis for $f(X)$
v Randomly select M samples for X

- Evaluate function $f(X)$ at each sampling point
\checkmark Estimate distribution of f using these M samples

Random samples

$$
\left\{X^{(1)}, X^{(2)}, \ldots\right\}
$$

Samples of $f(X)$

Distribution of $f(X)$

We assume that random samples can be easily created from a random number generator

Monte Carlo Analysis

- A random number generator creates a pseudo-random sequence for which the period is extremely large
\checkmark MATLAB function "randn $\left(\bullet\right.$)": period is $\sim 2^{64}$
v MATLAB function "rand(॰)": period is ~21492

Random Number Generator

 $$
\left\{x^{(1)}, x^{(2)}, \ldots\right\}
$$

■ All samples in $\left\{x^{(1)}, x^{(2)}, \ldots\right\}$ are "almost" independent

Monte Carlo Analysis

■ Example: sample independent random variables x and y

Random Number
 Generator
 $$
\left\{x^{(1)}, y^{(1)}, x^{(2)}, y^{(2)}, \ldots\right\}
$$

v Generate random sequence $\left\{x^{(1)}, y^{(1)}, x^{(2)}, y^{(2)}, \ldots\right\}$

- Create sampling pair $\left\{\left(\mathrm{x}^{(1)}, \mathrm{y}^{(1)}\right),\left(\mathrm{x}^{(2)}, \mathrm{y}^{(2)}\right), \ldots\right\}$
$\checkmark x^{(i)}$ and $y^{(i)}$ in each pair are independent

However, how can we sample correlated random variables?

Monte Carlo Analysis

■ Correlated random variables cannot be directly sampled by a random number generator

■ We can decompose correlated random variables to a set of independent variables, if they are jointly Normal
\checkmark Focus of this lecture

■ Other techniques also exist to sample correlated variables
v Details can be found in many text books on Monte Carlo analysis
Fishman, A First Course In Monte Carlo, 2006

Correlation Decomposition

■ Key idea: given the correlated random variables $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right.$. , find a linear transform $\mathrm{Y}=\mathrm{P} \cdot \mathrm{X}$ such that $\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots\right\}$ are independent
จ Only applicable to jointly Normal random variables for which $\left\{y_{1}, y_{2}, \ldots\right\}$ just need to be uncorrelated
\checkmark Otherwise, if the random variables are not jointly Normal, such a linear transform may not exist

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\frac{\left[\begin{array}{lll}
\square & \square & \square \\
\square & \square & \square \\
\square & \square & \square
\end{array}\right]}{\downarrow} \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Principal Component Analysis (PCA)

■ Given a set of jointly Normal random variables

$$
X=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]^{T}
$$

\checkmark Assume that all x_{i} 's have zero mean

■ Covariance matrix is

$$
E\left[X \cdot X^{T}\right]=E\left[\begin{array}{ccc}
x_{1}^{2} & x_{1} x_{2} & x_{1} x_{3} \\
x_{1} x_{2} & x_{2}^{2} & x_{2} x_{3} \\
x_{1} x_{3} & x_{2} x_{3} & x_{3}^{2}
\end{array}\right]
$$

The covariance matrix has many important properties, e.g., it is symmetric

Principal Component Analysis (PCA)

■ Covariance matrix is positive semi-definite

■ A symmetric matrix A is called positive semi-definite if

$$
Q^{T} A Q \geq 0 \quad \text { for any real-valued vector } \mathrm{Q}
$$

Why is a covariance matrix positive semi-definite?

Principal Component Analysis (PCA)

$■$ Assume that $\mathrm{X}=\left[\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{N}}\right]^{\top}$ are N random variables with zero mean

$$
\begin{gathered}
E\left[y^{2}\right]=E\left[\left(Q^{T} X\right) \cdot\left(X^{T} Q\right)\right]=Q^{T} \cdot E\left[X X^{T}\right] \cdot Q \geq 0 \\
\downarrow \quad \downarrow \\
\mathrm{y} \quad \mathrm{y}^{\top}=\mathrm{y}
\end{gathered}
$$

Principal Component Analysis (PCA)

■ To remove correlation, we decompose the covariance matrix by eigenvalues \& eigenvectors

$$
A=E\left[X \cdot X^{T}\right] \xrightarrow{A V_{i}=V_{i} \cdot \lambda_{i}} \quad A \cdot V=V \cdot \Sigma
$$

$$
V=\left[\begin{array}{lll}
V_{1} & V_{2} & \cdots
\end{array}\right]
$$

"Normalized"
eigenvectors: $\left\|\mathrm{V}_{\mathrm{i}}\right\|_{2}=1$

Eigenvalues

Principal Component Analysis (PCA)

- The eigen-decomposition of a covariance matrix A has a number of important properties
\checkmark A is symmetric \rightarrow all eigenvalues are real
v A is symmetric \rightarrow all eigenvectors are real and orthogonal

Identity matrix

Principal Component Analysis (PCA)

- The eigen-decomposition of a covariance matrix A has a number of important properties
v A is positive semi-definite \leftrightarrow all eigenvalues are non-negative

$$
A \cdot V=V \cdot \Sigma \quad V^{T} V=I
$$

$$
A=V \cdot \Sigma \cdot V^{-1}
$$

$$
A=V \cdot \Sigma \cdot V^{T}
$$

$$
\Sigma=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \lambda_{2} & \\
& & \ddots
\end{array}\right]
$$

Eigenvalues

Principal Component Analysis (PCA)

■ Define new random variables Y (principal components)

$$
\begin{gathered}
Y=\Sigma^{-0.5} \cdot V^{T} \cdot X \\
X=V \cdot \Sigma^{0.5} \cdot Y
\end{gathered}
$$

- All principal components (also called principal factors) are jointly Normal
- They are linear combination of jointly Normal random variables
\square We will theoretically prove that all principal components are independent and standard Normal

Principal Component Analysis (PCA)

■ All principal components have zero mean

$$
Y=\Sigma^{-0.5} \cdot V^{T} \cdot X
$$

$$
E[Y]=\Sigma^{-0.5} \cdot V^{T} \cdot E[X]
$$

$$
\square E[X]=0
$$

$$
E[Y]=0
$$

Principal Component Analysis (PCA)

■ All principal components are independent and standard Normal

$$
\begin{gathered}
Y=\Sigma^{-0.5} \cdot V^{T} \cdot X \\
E\left[Y \cdot Y^{T}\right]=E\left[\Sigma^{-0.5} \cdot V^{T} \cdot X \cdot X^{T} \cdot V \cdot \Sigma^{-0.5}\right] \\
E\left[Y \cdot Y^{T}\right]=\Sigma^{-0.5} \cdot V^{T} \cdot E\left[X \cdot X^{T}\right] \cdot V \cdot \Sigma^{-0.5}
\end{gathered}
$$

Principal Component Analysis (PCA)

$$
\begin{aligned}
& E\left[Y \cdot Y^{T}\right]=\Sigma^{-0.5} \cdot V^{T} \cdot E\left[X \cdot X^{T}\right] \cdot V \cdot \Sigma^{-0.5} \\
& \downarrow E\left[X \cdot X^{T}\right]=V \cdot \Sigma \cdot V^{T} \\
& E\left[Y \cdot Y^{T}\right]=\Sigma^{-0.5} \cdot V^{T} \cdot V \cdot \Sigma \cdot V^{T} \cdot V \cdot \Sigma^{-0.5} \\
& \sqrt{\square} V^{T} V=I \\
& E\left[Y \cdot Y^{T}\right]=\Sigma^{-0.5} \cdot \Sigma \cdot \Sigma^{-0.5}=I \text { Unit variance and uncorrelated }
\end{aligned}
$$

"Uncorrelated" = "independent" for jointly Normal random variables

Principal Component Analysis (PCA)

■ Example: x_{1} and x_{2} are zero mean and jointly Normal

$$
E\left[X \cdot X^{T}\right]=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right]
$$

\square Eigen decomposition

$$
\Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{cc}
-1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

Principal Component Analysis (PCA)

■ Example (continued):

$$
\begin{gathered}
\Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right] \text { and } V=\left[\begin{array}{cc}
-1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right] \\
Y=\Sigma^{-0.5} \cdot V^{T} \cdot X=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 3
\end{array}\right] \cdot\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \cdot X \\
Y=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{3 \sqrt{2}} & \frac{1}{3 \sqrt{2}}
\end{array}\right] \cdot X
\end{gathered}
$$

Principal Component Analysis (PCA)

■ Example (continued):

$$
\begin{gathered}
Y=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{3 \sqrt{2}} & \frac{1}{3 \sqrt{2}}
\end{array}\right] \cdot X \\
\square \\
E\left[Y \cdot Y^{T}\right]=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{3 \sqrt{2}} & \frac{1}{3 \sqrt{2}}
\end{array}\right] \cdot E\left[X \cdot X^{T}\right] \cdot\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{3 \sqrt{2}} & \frac{1}{3 \sqrt{2}}
\end{array}\right]^{T}
\end{gathered}
$$

Principal Component Analysis (PCA)

■ Example (continued):

$$
\begin{gathered}
E\left[Y \cdot Y^{T}\right]=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{3 \sqrt{2}} & \frac{1}{3 \sqrt{2}}
\end{array}\right] \cdot E\left[X \cdot X^{T}\right] \cdot\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{3 \sqrt{2}} & \frac{1}{3 \sqrt{2}}
\end{array}\right]^{T} \quad E\left[X \cdot X^{T}\right]=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right] \\
E\left[Y \cdot Y^{T}\right]=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{3 \sqrt{2}} & \frac{1}{3 \sqrt{2}}
\end{array}\right] \cdot\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right] \cdot\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{3 \sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{3 \sqrt{2}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

All principal components in Y are independent and standard Normal

Principal Component Analysis (PCA)

■ The decomposition for independence is not unique
\checkmark Define

$$
\begin{array}{r}
Z=U \cdot Y \quad \mathrm{U} \text { is an orthogonal matrix, } \\
\text { i.e., } U^{\top} U=1
\end{array}
$$

$E\left[Z \cdot Z^{T}\right]=E\left[U \cdot Y \cdot Y^{T} \cdot U^{T}\right]=U \cdot E\left[Y \cdot Y^{T}\right] \cdot U^{T}=U \cdot U^{T}=I$
All random variables in Z are also independent and standard Normal

Dimension Reduction by PCA

■ Example: $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} are zero mean and jointly Normal

$$
E\left[X \cdot X^{T}\right]=\left[\begin{array}{lll}
5 & 4 & 3 \\
4 & 5 & 3 \\
3 & 3 & 2
\end{array}\right]
$$

\square Eigen decomposition

$$
\Sigma=\left[\begin{array}{ccc}
11 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right] \text {, and } V=\left[\begin{array}{ccc}
0.6396 & 0.7071 & 0.3015 \\
0.6396 & -0.7071 & 0.3015 \\
0.4264 & 0 & -0.9045
\end{array}\right]
$$

One of the eigenvalues is 0

Dimension Reduction by PCA

■ Example (continued):
\checkmark In this case, the 3×3 covariance matrix has a rank of 2
v Only 2 independent principal components (Y) are required to EXACTLY represent the 3-dimensional random space

$$
\begin{gathered}
X=V \cdot \Sigma^{0.5} \cdot Y=\left[\begin{array}{ccc}
0.6396 & 0.7071 & 0.3015 \\
0.6396 & -0.7071 & 0.3015 \\
0.4264 & 0 & -0.9045
\end{array}\right] \cdot\left[\begin{array}{ccc}
\sqrt{11} & 0 & 0 \\
0 & \sqrt{1} & 0 \\
0 & 0 & 0
\end{array}\right] \cdot Y \\
X=\left[\begin{array}{ccc}
2.1213 & 0.7071 & 0 \\
2.1213 & -0.7071 & 0 \\
1.4142 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Dimension Reduction by PCA

- In general, if some of the eigenvalues are small, they can be ignored to reduce the random space dimension
v Allows us to use a compact set of independent principal components to approximate the original high-dimensional space
v. E.g., only two random variables y_{1} and y_{2} are required to represent the variations of x_{1}, x_{2} and x_{3} in the previous example

■ PCA is useful to reduce problem size in many applications
v But applicable to jointly Normal variables only

Summary

■ Principal component analysis (PCA)
\checkmark Correlation decomposition
v Dimension reduction

