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Overview 

 Principal Component Analysis (PCA) 
 Correlation decomposition 
 Dimension reduction 
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 Monte Carlo Analysis 

 Monte Carlo analysis for f(X) 
 Randomly select M samples for X 
 Evaluate function f(X) at each sampling point 
 Estimate distribution of f using these M samples 

We assume that random samples can be easily 
created from a random number generator 

Distribution of 
f(X) 

Evaluate 
f(X) 

Random samples 
{X(1), X(2), ...} 

Samples of f(X) 
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 Monte Carlo Analysis 

 A random number generator creates a pseudo-random 
sequence for which the period is extremely large 
 MATLAB function “randn(•)”: period is ~264 

 MATLAB function “rand(•)”: period is ~21492 

 
 
 
 

 All samples in {x(1),x(2),...} are “almost” independent 

Random Number 
Generator {x(1),x(2),...} 
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 Monte Carlo Analysis 

 Example: sample independent random variables x and y 
 
 
 
 
 

 Generate random sequence {x(1),y(1),x(2),y(2),...} 
 Create sampling pair {(x(1),y(1)),(x(2),y(2)),...} 
 x(i) and y(i) in each pair are independent 

Random Number 
Generator {x(1),y(1),x(2),y(2),...} 

However, how can we sample correlated random 
variables? 
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 Monte Carlo Analysis 

 Correlated random variables cannot be directly sampled by a 
random number generator 
 

 We can decompose correlated random variables to a set of 
independent variables, if they are jointly Normal 
 Focus of this lecture 

 
 Other techniques also exist to sample correlated variables 

 Details can be found in many text books on Monte Carlo analysis 

Fishman, A First Course In Monte Carlo, 2006 
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 Correlation Decomposition 

 Key idea: given the correlated random variables {x1,x2,...}, find 
a linear transform Y = P⋅X such that {y1,y2,...} are independent 
 Only applicable to jointly Normal random variables for which 

{y1,y2,...} just need to be uncorrelated 
 Otherwise, if the random variables are not jointly Normal, such 

a linear transform may not exist 
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 Principal Component Analysis (PCA) 

 Given a set of jointly Normal random variables 
 
 

 Assume that all xi’s have zero mean 

 
 Covariance matrix is 
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The covariance matrix has many important 
properties, e.g., it is symmetric 
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 Principal Component Analysis (PCA) 

 Covariance matrix is positive semi-definite 
 

 A symmetric matrix A is called positive semi-definite if 

0≥AQQT for any real-valued vector Q 

Why is a covariance matrix positive 
semi-definite? 
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 Principal Component Analysis (PCA) 

 Assume that X = [x1 x2 ... xN]T are N random variables with 
zero mean 

XQy T=

any real-value vector scalar 

[ ] ( ) ( )[ ] [ ] 02 ≥⋅⋅=⋅= QXXEQQXXQEyE TTTT

y yT = y 
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 Principal Component Analysis (PCA) 

 To remove correlation, we decompose the covariance matrix 
by eigenvalues & eigenvectors 

[ ]TXXEA ⋅= Σ⋅=⋅ VVA

“Normalized” 
eigenvectors: ||Vi||2 = 1 

Eigenvalues 
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 Principal Component Analysis (PCA) 

 The eigen-decomposition of a covariance matrix A has a 
number of important properties 
 A is symmetric → all eigenvalues are real 
 A is symmetric → all eigenvectors are real and orthogonal 

Σ⋅=⋅ VVA IVV T =

Identity matrix 
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 Principal Component Analysis (PCA) 

 The eigen-decomposition of a covariance matrix A has a 
number of important properties 
 A is positive semi-definite ↔ all eigenvalues are non-negative 

TVVA ⋅Σ⋅=

1−⋅Σ⋅= VVA

11 −− ⋅Σ⋅=⋅⋅ VVVVA

Σ⋅=⋅ VVA IVV T =

Eigenvalues 
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 Principal Component Analysis (PCA) 

 Define new random variables Y (principal components) 
 
 
 

 All principal components (also called principal factors) are 
jointly Normal 
 They are linear combination of jointly Normal random variables 

 
 We will theoretically prove that all principal components are 

independent and standard Normal 

YVX
XVY T

⋅Σ⋅=

⋅⋅Σ= −

5.0

5.0
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 Principal Component Analysis (PCA) 

 All principal components have zero mean 

XVY T ⋅⋅Σ= − 5.0

[ ] [ ]XEVYE T ⋅⋅Σ= − 5.0

All random variables 
in X have zero mean [ ] 0=XE

[ ] 0=YE
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 Principal Component Analysis (PCA) 

 All principal components are independent and standard Normal 

[ ] [ ]5.05.0 −− Σ⋅⋅⋅⋅⋅Σ=⋅ VXXVEYYE TTT

XVY T ⋅⋅Σ= − 5.0

[ ] [ ] 5.05.0 −− Σ⋅⋅⋅⋅⋅Σ=⋅ VXXEVYYE TTT
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 Principal Component Analysis (PCA) 

[ ] [ ] 5.05.0 −− Σ⋅⋅⋅⋅⋅Σ=⋅ VXXEVYYE TTT

[ ] TT VVXXE ⋅Σ⋅=⋅

[ ] 5.05.0 −− Σ⋅⋅⋅Σ⋅⋅⋅Σ=⋅ VVVVYYE TTT

IVV T =

[ ] IYYE T =Σ⋅Σ⋅Σ=⋅ −− 5.05.0 Unit variance and uncorrelated 

“Uncorrelated” = “independent” for jointly Normal random variables 
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 Principal Component Analysis (PCA) 

 Example: x1 and x2 are zero mean and jointly Normal 
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 Principal Component Analysis (PCA) 

 Example (continued): 

XXVY T ⋅
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 Principal Component Analysis (PCA) 

 Example (continued): 
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 Principal Component Analysis (PCA) 

 Example (continued): 
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All principal components in Y are independent and standard Normal 
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 Principal Component Analysis (PCA) 

 The decomposition for independence is not unique 
 Define  

YUZ ⋅= U is an orthogonal matrix, 
i.e., UTU = I 

[ ] [ ] [ ] IUUUYYEUUYYUEZZE TTTTTT =⋅=⋅⋅⋅=⋅⋅⋅=⋅

All random variables in Z are also independent 
and standard Normal 
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 Dimension Reduction by PCA 

 Example: x1, x2 and x3 are zero mean and jointly Normal 
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Eigen decomposition 
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 Dimension Reduction by PCA 

 Example (continued): 
 In this case, the 3x3 covariance matrix has a rank of 2 
 Only 2 independent principal components (Y) are required to 

EXACTLY represent the 3-dimensional random space 
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Only y1 and y2 are required 
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 Dimension Reduction by PCA 

 In general, if some of the eigenvalues are small, they can be 
ignored to reduce the random space dimension 
 Allows us to use a compact set of independent principal 

components to approximate the original high-dimensional space 
 E.g., only two random variables y1 and y2 are required to 

represent the variations of x1, x2 and x3 in the previous example 

 
 PCA is useful to reduce problem size in many applications 

 But applicable to jointly Normal variables only 
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Summary 

 Principal component analysis (PCA) 
 Correlation decomposition 
 Dimension reduction 
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