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m Principal Component Analysis (PCA)
~ Correlation decomposition
~ Dimension reduction
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Monte Carlo Analysis

m Monte Carlo analysis for f(X)
Y Randomly select M samples for X
N Evaluate function f(X) at each sampling point
N Estimate distribution of f using these M samples

Random samples j> Evaluate j> j> R
X0, X, .} f(X)
Samples of f(X) Distribution of
f(X)

We assume that random samples can be easily
created from a random number generator
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Monte Carlo Analysis

m A random number generator creates a pseudo-random
sequence for which the period is extremely large
~ MATLAB function “randn(e)”: period is ~2%4
< MATLAB function “rand(e)”: period is ~21492

Random Number
(1) ()
[ Generator ]j1> {x5.XE,...

m All samples in {x® x@ ..} are “almost” independent
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Monte Carlo Analysis

m Example: sample independent random variables x and y

Random Number
[ Generator Jj‘ {xy®,x@,y@,..}

~ Generate random sequence {x),y( x@ y@) 1
N Create sampling pair {(x®,y1)),(x®),y(?),...}
< x0 and y® in each pair are independent

However, how can we sample correlated random
variables?
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Monte Carlo Analysis

m Correlated random variables cannot be directly sampled by a
random number generator

m We can decompose correlated random variables to a set of
Independent variables, if they are jointly Normal
~ Focus of this lecture

m Other techniques also exist to sample correlated variables
N Details can be found in many text books on Monte Carlo analysis

Fishman, A First Course In Monte Carlo, 2006
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Correlation Decomposition

m Key idea: given the correlated random variables {x;,X,,...}, find
a linear transform Y = P-X such that {y,,y,,...} are independent

N Only applicable to jointly Normal random variables for which
{y1,¥s,...} Just need to be uncorrelated

N Otherwise, if the random variables are not jointly Normal, such
a linear transform may not exist

v | [ODog|[x
Y. =0 O O X
Y; | O 0O 0O [ %
v
P
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Principal Component Analysis (PCA)

m Given a set of jointly Normal random variables

X:[Xl X, X3]T

N Assume that all x;'s have zero mean

m Covariance matrix is

Xl2 Xl X2 Xl X3

E[X-XT]:E XX, X5 XX

2
| KiXg XXy Xy

The covariance matrix has many important
properties, e.g., it IS symmetric
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Principal Component Analysis (PCA)

m Covariance matrix Is positive semi-definite

m A symmetric matrix A is called positive semi-definite if

Q'AQ >0 forany real-valued vector Q

Why is a covariance matrix positive
semi-definite?
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Principal Component Analysis (PCA)

m Assume that X =[x, X, ... Xy]" are N random variables with

Zero mean
y=Q'X
PN
scalar any real-value vector

4L

Ely’|=ElQ"x)-(x"Q)|=Q" -E[xx"}-=0
Voo

y y'=y
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Principal Component Analysis (PCA)

m To remove correlation, we decompose the covariance matrix
by eigenvalues & eigenvectors

acglx.xt] TV my s
o ]
V=, Vv, -] = 4
“Normalized” Eigenvalues

eigenvectors: ||Vi||, = 1
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Principal Component Analysis (PCA)

m The eigen-decomposition of a covariance matrix A has a
number of important properties
<A is symmetric — all eigenvalues are real
A is symmetric — all eigenvectors are real and orthogonal

AV =V .3 > v =
N

Identity matrix
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Principal Component Analysis (PCA)

m The eigen-decomposition of a covariance matrix A has a
number of important properties
W A is positive semi-definite <> all eigenvalues are non-negative

AV =V.X VTV =

AV.V'i=v.z.v* Y= A,
Eigenvalues
A=V.xz.V™
A=V.Z.V'
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Principal Component Analysis (PCA)

m Define new random variables Y (principal components)

Y=2".VT.X
X =V.2%.Y

m All principal components (also called principal factors) are
jointly Normal
N They are linear combination of jointly Normal random variables

m We will theoretically prove that all principal components are
Independent and standard Normal
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Principal Component Analysis (PCA)

m All principal components have zero mean

Y=2".V'.X

s

Ely]=2.vT.E[X]

E[X ] ~0 AII random variables
il In X have zero mean

E[v]=0
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Principal Component Analysis (PCA)

m All principal components are independent and standard Normal

Y =305 yT .y

1L

EY YT ]=E[E 0 VT X XT v .20

1L

E[Y .YT]:Z—O.S AVAl -E[X .XT].V 305
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Principal Component Analysis (PCA)

E[Y -YT::z—0-5 AVAl -E[X -XT]-V 305

L E|lX - XT|=v .2V

ElY -YT]ZZ—O.S AVAIRVAS SRVAIRVAS o

V'V =1

E[Y YT ]: > %°.%.3% = Unitvariance and uncorrelated

“Uncorrelated” = “independent” for jointly Normal random variables
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Principal Component Analysis (PCA)

m Example: x, and x, are zero mean and jointly Normal
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Principal Component Analysis (PCA)

m Example (continued):

Z—Ll) g} and V:{_l/ﬁ 1/*5}

1/\2 12
J L
R
—05 \/T 1 0
Y =05y 'X{o 1/3}- \15 \?.x
V2 A2
L
11
32 32
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Principal Component Analysis (PCA)

m Example (continued):

e
| V2 V2
Y=| ¥ Z X
32 32

1 1 1
ey vl Y2 N2 [glx.xT]| V2 \15
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Principal Component Analysis (PCA)

m Example (continued):

11 11
by )| 7 F elox]| 2 2| ekl
W2 32 32 32
T 11 T 1 1]
i 5 4 1 0
el vl 15 \15 'L 5] \15 3\15 {o J
| 3/2 32 V2 32

All principal components in Y are independent and standard Normal
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Principal Component Analysis (PCA)

m The decomposition for independence is not unique
N Define

U is an orthogonal matrix,
l.e, UTU = |

1l

Elz-z"|=Eu-Y - YT.UT|=U-Ely YT |UT=U-UT =1

Z=U"-Y

All random variables in Z are also independent
and standard Normal
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Dimension Reduction by PCA

m Example: x,, X, and x; are zero mean and jointly Normal

E[X-XT]=

w ~ O
w o1 b~
N W W

Eigen decomposition

(11 0 0 (0.6396 0.7071  0.3015 |
=0 1 0| and V =]0.6396 -0.7071 0.3015
0O 0rof 0.4264 0 —0.9045

L \ __& L .

One of the eigenvalues is 0
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Dimension Reduction by PCA

m Example (continued):
< In this case, the 3x3 covariance matrix has a rank of 2

“ Only 2 independent principal components (Y) are required to
EXACTLY represent the 3-dimensional random space

[0.6396 07071 03015 1[+11 0 0
X =V -$%.y =/ 06396 —-07071 03015 || 0 1 0]
04264 0 -09045/| 0 0 O

D Onlyy, and Yy, are required

4

N N

21213 07071 10} [y,

X =(2.1213 ~0.707L1 0 |'} y,/
\

14142 0 \0J |V,

\

4

y, does not affect X
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Dimension Reduction by PCA

m In general, if some of the eigenvalues are small, they can be
Ignored to reduce the random space dimension

“ Allows us to use a compact set of independent principal
components to approximate the original high-dimensional space

< E.g., only two random variables y, and y, are required to
represent the variations of x;, X, and X5 in the previous example

m PCA is useful to reduce problem size in many applications
N But applicable to jointly Normal variables only
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m Principal component analysis (PCA)
~ Correlation decomposition
~ Dimension reduction

Slide 26



	18-660: Numerical Methods for Engineering Design and Optimization
	Overview
		Monte Carlo Analysis
		Monte Carlo Analysis
		Monte Carlo Analysis
		Monte Carlo Analysis
		Correlation Decomposition
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Principal Component Analysis (PCA)
		Dimension Reduction by PCA
		Dimension Reduction by PCA
		Dimension Reduction by PCA
	Summary

