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Overview 

 Monte Carlo Analysis 
 Latin hypercube sampling 
 Importance sampling 
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 Latin Hypercube Sampling (LHS) 

 A great number of samples are typically required in traditional 
Monte Carlo to achieve good accuracy 
 

 Various techniques exist to improve Monte Carlo accuracy 
 

 Controlling sampling points is the key 
 Latin hypercube sampling is a widely-used method to generate 

controlled random samples 
 The basic idea is to make sampling point distribution close to 

probability density function (PDF)   

M. Mckay, R. Beckman and W. Conover, “A comparison of three methods 
for selecting values of input variables in the analysis of output from a 
computer code,” Technometrics, vol. 21, no. 2, pp. 239-245, May. 1979 
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 Latin Hypercube Sampling (LHS) 

 One dimensional Latin hypercube sampling 
 Evenly partition CDF into N regions 
 Randomly pick up one sampling point in each region 
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 Latin Hypercube Sampling (LHS) 

 Two dimensional Latin hypercube sampling 
 x1 and x2 must be independent 
 Generate one-dimensional LHS samples for x1 

 Generate one-dimensional LHS samples for x2 

 Randomly combine the LHS samples to two-dimensional pairs 
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 One sample in each row and each column 
 

 Sampling is random in each grid 
 

 Higher-dimensional LHS samples can be 
similarly generated 
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 Latin Hypercube Sampling (LHS) 

 Matlab code for LHS sampling of independent standard 
Normal distributions 

 
data = rand(NSample,NVar); 
for i = 1:NVar 
    index = randperm(NSample); 
    prob = (index'-data(:,i))/NSample; 
    data(:,i) = sqrt(2)*erfinv(2*prob-1); 
end; 

 
 NVar:  # of random variables 
 NSample:  # of samples 
 data:  LHS sampling points 
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 Latin Hypercube Sampling (LHS) 

 Compare Monte Carlo accuracy for a simple example 
 x ~ N(0,1) (standard Normal distribution) 
 Repeatedly estimate the mean value by Monte Carlo analysis 
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 Importance Sampling 

 Even with Latin hypercube sampling, Monte Carlo analysis 
requires a HUGE number of sampling points 
 

 Example: rare event estimation 
 
 
 
 

 The theoretical answer for P(x ≤ -5) is equal to 2.87×10-7 

 ~100M sampling points are required if we attempt to estimate 
this probability by random sampling or LHS 

( )1,0~ Nx Standard Normal distribution 

Estimate ( ) ???5 =−≤xP
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 Importance Sampling 

 Key idea: 
 Do not generate random samples from pdfx(t) 
 Instead, find a good distorted pdfy(t) to improve Monte Carlo 

sampling accuracy 

 
 Example: if x ~ N(0,1), what is P(x ≤ -5)? 

 Intuitively, if we draw sampling points based on pdfy(t), more 
samples will fall into the grey area  
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How do we calculate P(x ≤ -5) 
when sampling pdfy(t)?  
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 Importance Sampling 

 Assume that we want to estimate the following expected value 
 
 
 

 Example: if we want to estimate P(x ≤ -5), then 
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 Importance Sampling 

 Estimate E[f(x)] where x ~ pdfx(t) by importance sampling 
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 Importance Sampling 

 Estimate E[f(x)] where x ~ pdfx(t) by traditional sampling 
 Step 1: draw M random samples {t1,t2,...,tM} based on pdfx(t) 
 Step 2: calculate fm = f(tm) at each sampling point m = 1,2,...,M 
 Step 3: calculate E[f] ≈ (f1+f2+...+fM)/M 

 
 Estimate E[f(x)] where x ~ pdfx(t) by importance sampling 

 Step 1: draw M random samples {t1,t2,...,tM} based on pdfy(t) 
 Step 2: calculate gm = f(tm)⋅pdfx(tm)/pdfy(tm) at each sampling 

point m = 1,2,...,M 
 Step 3: calculate E[f] ≈ (g1+g2+...+gM)/M 

How do we decide the optimal pdfy(t) to achieve minimal 
Monte Carlo analysis error?  
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 Importance Sampling 

 Determine optimal pdfy(t) for importance sampling 
 
 
 
 

 The accuracy of an estimator can be quantitatively measured 
by its variance 

 
 

 To improve Monte Carlo analysis accuracy, we should 
minimize VAR[μf] 
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 Importance Sampling 

 Determine optimal pdfy(t) for importance sampling 
 
 
 

 We achieve the minimal VAR[μf] = 0 if 
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 Importance Sampling 

 
 

 How do we decide the value k? 
 

 K cannot be arbitrarily selected 
 pdfy(t) must be a valid PDF that satisfies the following condition 
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Finding the optimal pdfy(t) 
requires to know E[f], i.e., the 

answer of our Monte Carlo 
analysis!!! 
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 Importance Sampling 

 In practice, such an optimal pdfy(t) cannot be easily applied 
 

 Instead, we typically look for a sub-optimal solution that 
satisfies the following constraints 
 Easy to construct – we do not have to know k = E[f] 
 Easy to sample – not all random distributions can be easily 

sampled by a random number generator 
 Minimal estimator variance – the sub-optimal pdfy(t) is close to 

the optimal case as much as possible 
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 Importance Sampling 

 Finding the right pdfy(t) is nontrivial for practical problems 
 No magic equation exists in general 
 Engineering approach is based on heuristics 
 Sometimes require a lot of human experience and numerical 

optimization 

 
 The criterion to choose pdfy(t) is also application-dependent 
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 Importance Sampling 

 Example: if x ~ N(0,1), what is P(x ≤ -5)? 

Several possible choices for pdfy(t) 
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Summary 

 Monte Carlo analysis 
 Latin hypercube sampling 
 Importance sampling 
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