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Overview 

 Monte Carlo Analysis 
 Random variable 
 Probability distribution 
 Random sampling 
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Random Variables 

 A random variable is a real-valued function of the outcome of 
the experiment 

x (random variable) = 

+1.0 (Experiment 1) 
 
−0.3 (Experiment 2) 
 
... 
 
−2.4 (Experiment N) 

We get different results from different experiments (i.e., 
the output is random) 
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Probability Distribution 

 A continuous random variable x is defined by its probability 
distribution function 
 

 Probability density function (PDF) 
 pdfx(tx) denotes the probability per unit 

length near x = tx 

 
 
 

 Cumulative distribution function (CDF) 
 cdfx(tx) equals the probability of x ≤ tx 
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Expectation 

 Given a random variable x and a function f(x), the expectation 
of f(x) is the weighted average of the possible values of f(x) 
 
 
 
 

 A useful equation for expected value calculation 
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Mean, Variance and Standard Deviation 

 Mean 
 
 

 Variance 
 
 
 

 Standard deviation 
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[ ] [ ]xVARxSTD =

VAR[x] is always positive! 
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Mean, Variance and Standard Deviation 

 Mean measures the “average position” of x 
 
 
 
 

 Variance measures the “spread” of the distribution 

x 0 

PDF1 

x 0 

PDF2 

Small mean Large mean 

x 0 

PDF1 

x 0 

PDF2 

Small variance Large variance 

Δ 
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Moments and Central Moments 

 k-th order moment 
 
 
 
 

 Mean is the first order moment 

 
 k-th order central moments 

 
 
 
 

 Variance is the second order central moment 
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Normal Distribution 

 A random variable x is Normal if 
 
 
 
 

 μ: mean 
 σ: standard deviation 
 Denoted as N(μ, σ2) 

 
 
 

 If μ = 0 and σ = 1, it is called standard Normal distribution 
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Why is Normal distribution important to us? 
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Normal Distribution 

 Many physical variations are Normal 
 

 Central limit theorem: the variation caused by a large number 
of independent random factors is “almost” Normal 
 

1xy = 21 xxy +=

Assume that all xi’s are independent and have the same uniform distribution 
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Multiple Random Variables 

 Two continuous random variables x and y are defined by their 
joint probability distribution 
 

 Joint probability density function 
 
 
 

 Joint cumulative distribution function 
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Applicable to more than two random variables 
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Joint Probability Distribution 

 Example: bivariate Normal distribution 

Joint probability density function Joint cumulative distribution function 
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Marginal Distribution Function 

 Marginal probability density function 
 
 
 
 
 

 Marginal cumulative distribution function 
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Marginal Distribution Function 

 Example: bivariate Normal distribution 

Marginal 
PDF for x Marginal 

PDF for y 
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Covariance and Correlation 

 Covariance 
 
 

 If COV[x,y] = 0, then x and y are uncorrelated 

 
 Covariance matrix 

 
 
 
 

 Σ is always symmetric 
 Diagonal components are corresponding to variance values 
 Σ is diagonal if x and y are uncorrelated 
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Covariance and Correlation 

 Correlation (normalized covariance) 
 
 
 
 

 Correlation between two random variables can be visualized 
by scatter plot 
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Covariance and Correlation 

 Example: correlated random variables 
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Monte Carlo Analysis 

 Problem definition 
 Find probability distribution and/or moments of 

 
 
 
 

 In general, the distribution and/or moments of f cannot be 
calculated analytically, because 
 f(X) is nonlinear 
 f(X) may not have closed-form expression (we can only 

numerically calculate f for a given X value) 

( )Xf

Function of 
interest 

Random variable with 
known distribution 
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Monte Carlo Analysis 

 Monte Carlo analysis for f(X) 
 Randomly select M samples for X 
 Evaluate function f(X) at each sampling point 
 Estimate distribution of f using these M samples 

 

Distribution of 
f(X) 

Evaluate 
f(X) 

Random samples 
{X(1), X(2), ...} 

Samples of f(X) 
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Monte Carlo Analysis Example 

 Example: estimate the probability distribution of 
 
 
 

 x ~ N(0,1) (standard Normal distribution) 

( )xy exp=
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Monte Carlo Analysis Example 

 Step 1: draw random samples for x 

 
 
 
 

 Step 2: calculate y at each sampling point 

Samples 1 2 3 4 5 6 ... 
x -0.4326 -1.6656 0.1253 0.2877 -1.1465 1.1909 ... 

M random samples for x 

M random samples for y 

Samples 1 2 3 4 5 6 ... 
y 0.6488 0.1891 1.1335 1.3333 0.3178 3.2901 ... 
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Monte Carlo Analysis Result 

 Monte Carlo result is typically represented by a histogram 
 A big table of data is not intuitive 

Histogram of y based on 1000 random samples 

QUESTION:  how accurate is Monte Carlo analysis? 
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Monte Carlo Analysis Accuracy 

 Monte Carlo analysis is not deterministic 
 We cannot get identical results when running MC twice 
 The analysis error is not deterministic 

 

 Monte Carlo accuracy depends on the number of samples 
 Examples: histogram of y 

100 samples 1000 samples 10000 samples 

0 2 4 6 8 10
0

5

10

15

20

25

y

N
um

be
r o

f S
am

pl
es

0 5 10 15 20
0

100

200

300

400

500

y

N
um

be
r o

f S
am

pl
es

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

y

N
um

be
r o

f S
am

pl
es



Slide 24   

Monte Carlo Analysis Accuracy 

 Example: bivariate Normal distribution 
 x and y are independent and jointly standard Normal 
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Monte Carlo Analysis Accuracy 

 Statistical methods exist to analyze Monte Carlo accuracy 
 

 Example: Monte Carlo accuracy analysis 
 
 
 

 Estimate the mean value μx by Monte Carlo analysis 
 Our question: how accurate is the estimated μx (dependent on 

the number of Monte Carlo samples)? 

( )1,0~ Nx Standard Normal distribution 
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Monte Carlo Analysis Accuracy 

 Monte Carlo analysis for the mean value μx 
 Randomly draw M sampling points {x(1),x(2),...,x(M)} 
 Estimate μx by the following equation 

 
 
 

 Assumptions in our accuracy analysis 
 Each x(i) is random and satisfies standard Normal distribution – 

it is randomly created for x ~ N(0,1) 
 All x(i)’s are mutually independent – samples from a good 

random number generator should be independent 

 
 μx is a function of {x(1),x(2),...,x(M)}, which is a random variable 
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Monte Carlo Analysis Accuracy 

 Mean of μx 

 
 
 
 
 

 Variance of μx 
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Monte Carlo Analysis Accuracy 

 E{μx} = 0 
 ux is an unbiased estimator 
 Otherwise, if the estimator mean is not equal to the actual 

mean, it is called a biased estimator 
 

 E{μx
2} = 1/M 

 Variance decreases as M increases 
 Distributions of μx for different M values 
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Monte Carlo Analysis Accuracy 

 “Average” estimation accuracy is better when using larger M 
 

 In this μx example 
 If we require that  ±3 sigma of μx is within [-0.1, 0.1] 

 
 
 
 

 If we require that ±3 sigma of μx is within [-0.01, 0.01] 
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M
900≥M

01.03
≤

M
90000≥M



Slide 30   

Monte Carlo Analysis Accuracy 

 Accuracy is improved by 10x if the number of samples is 
increased by 100x 
 

 1K ~ 10K sampling points are typically required to achieve 
reasonable accuracy 
 

 However, even if you use 10K sampling points, an accurate 
result is not guaranteed! 
 Monte Carlo analysis is random, and you can be unlucky (e.g., 

going beyond ±3 sigma range) 
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Summary 

 Monte Carlo analysis 
 Random variable 
 Probability distribution 
 Random sampling 
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