

18-660: Numerical Methods for Engineering Design and Optimization

Xin Li Department of ECE Carnegie Mellon University Pittsburgh, PA 15213

Overview

- Monte Carlo Analysis
 - Random variable
 - Probability distribution
 - Random sampling

Random Variables

A random variable is a real-valued function of the outcome of the experiment

We get different results from different experiments (i.e., the output is random)

Probability Distribution

A continuous random variable x is defined by its probability distribution function

Probability density function (PDF)

pdf_x(t_x) denotes the probability per unit length near x = t_x

$$\int_{a}^{b} p df_{x}(\tau_{x}) \cdot d\tau_{x} = P(a \le x \le b)$$

Cumulative distribution function (CDF) \triangleleft cdf_x(t_x) equals the probability of x \leq t_x

$$cdf_{x}(t_{x}) = \int_{-\infty}^{t_{x}} pdf_{x}(\tau_{x}) \cdot d\tau_{x} = P(x \le t_{x})$$

Expectation

Given a random variable x and a function f(x), the expectation of f(x) is the weighted average of the possible values of f(x)

$$E[f(x)] = \int_{-\infty}^{+\infty} f(\tau_x) \cdot pdf_x(\tau_x) \cdot d\tau_x$$

A useful equation for expected value calculation

$$E[f(x)+g(x)]=E[f(x)]+[g(x)]$$

Mean, Variance and Standard Deviation

$$E[x] = \int_{-\infty}^{+\infty} \tau_x \cdot pdf_x(\tau_x) \cdot d\tau_x$$

Variance

Mean

$$VAR[x] = E\left[\left(x - E[x]\right)^2\right] = \int_{-\infty}^{+\infty} [\tau_x - E(x)]^2 \cdot pdf_x(\tau_x) \cdot d\tau_x$$

Standard deviation

$$STD[x] = \sqrt{VAR[x]}$$

VAR[x] is always positive!

Mean, Variance and Standard Deviation

Moments and Central Moments

k-th order moment

$$E[x^{k}] = \int_{-\infty}^{+\infty} \tau_{x}^{k} \cdot pdf_{x}(\tau_{x}) \cdot d\tau_{x}$$

Mean is the first order moment

k-th order central moments

$$E\left[\left(x-E[x]\right)^{k}\right] = \int_{-\infty}^{+\infty} [\tau_{x}-E(x)]^{k} \cdot pdf_{x}(\tau_{x}) \cdot d\tau_{x}$$

Variance is the second order central moment

Normal Distribution

If $\mu = 0$ and $\sigma = 1$, it is called standard Normal distribution Why is Normal distribution important to us?

Normal Distribution

Many physical variations are Normal

Central limit theorem: the variation caused by a large number of independent random factors is "almost" Normal

Assume that all x_i's are independent and have the same uniform distribution

Multiple Random Variables

- Two continuous random variables x and y are defined by their joint probability distribution
- Joint probability density function

$$\int_{c}^{d} \int_{a}^{b} p df_{x,y}(\tau_{x},\tau_{y}) \cdot d\tau_{x} \cdot d\tau_{y} = P(a \le x \le b, c \le y \le d)$$

Joint cumulative distribution function

$$cdf_{x,y}(t_x,t_y) = P(x \le t_x, y \le t_y) = \int_{-\infty-\infty}^{t_x} \int_{-\infty-\infty}^{t_y} pdf_{x,y}(\tau_x,\tau_y) \cdot d\tau_x \cdot d\tau_y$$

Applicable to more than two random variables

Joint Probability Distribution

Example: bivariate Normal distribution

Joint probability density function

Joint cumulative distribution function

Marginal Distribution Function

Marginal probability density function

$$pdf_{x}(t_{x}) = \int_{-\infty}^{+\infty} pdf_{x,y}(t_{x},\tau_{y}) \cdot d\tau_{y}$$
$$pdf_{y}(t_{y}) = \int_{-\infty}^{+\infty} pdf_{x,y}(\tau_{x},t_{y}) \cdot d\tau_{x}$$

Marginal cumulative distribution function

$$cdf_{x}(t_{x}) = P(x \le t_{x}, y \le +\infty) = \lim_{t_{y} \to +\infty} cdf_{x,y}(t_{x}, t_{y})$$
$$cdf_{y}(t_{y}) = P(x \le +\infty, y \le t_{y}) = \lim_{t_{x} \to +\infty} cdf_{x,y}(t_{x}, t_{y})$$

Marginal Distribution Function

Example: bivariate Normal distribution

Covariance and Correlation

Covariance

$$COV[x, y] = E[(x - E[x]) \cdot (y - E[y])]$$

◄ If COV[x,y] = 0, then x and y are uncorrelated

Covariance matrix

$$\Sigma = \begin{bmatrix} COV[x, x] & COV[x, y] \\ COV[y, x] & COV[y, y] \end{bmatrix}$$

- Σ is always symmetric
- Diagonal components are corresponding to variance values
- \blacksquare Σ is diagonal if x and y are uncorrelated

Covariance and Correlation

Correlation (normalized covariance)

$$COR[x, y] = \frac{COV[x, y]}{STD[x] \cdot STD[y]}$$

 Correlation between two random variables can be visualized by scatter plot

Covariance and Correlation

Example: correlated random variables

Monte Carlo Analysis

Problem definition

Find probability distribution and/or moments of

In general, the distribution and/or moments of f cannot be calculated analytically, because

- ◄ f(X) is nonlinear
- f(X) may not have closed-form expression (we can only numerically calculate f for a given X value)

Monte Carlo Analysis

- Monte Carlo analysis for f(X)
 - Randomly select M samples for X
 - Evaluate function f(X) at each sampling point
 - Estimate distribution of f using these M samples

Monte Carlo Analysis Example

Example: estimate the probability distribution of

 $y = \exp(x)$

 $\neg x \sim N(0,1)$ (standard Normal distribution)

Monte Carlo Analysis Example

Step 1: draw random samples for x

Samples	1	2	3	4	5	6	
Х	-0.4326	-1.6656	0.1253	0.2877	-1.1465	1.1909	

M random samples for x

Step 2: calculate y at each sampling point

Samples	1	2	3	4	5	6	
У	0.6488	0.1891	1.1335	1.3333	0.3178	3.2901	•••

M random samples for y

Monte Carlo Analysis Result

- Monte Carlo result is typically represented by a histogram
 - A big table of data is not intuitive

Histogram of y based on 1000 random samples

QUESTION: how accurate is Monte Carlo analysis?

- Monte Carlo analysis is not deterministic
 - We cannot get identical results when running MC twice
 - The analysis error is not deterministic
- Monte Carlo accuracy depends on the number of samples

Examples: histogram of y

Example: bivariate Normal distribution

x and y are independent and jointly standard Normal

Statistical methods exist to analyze Monte Carlo accuracy

Example: Monte Carlo accuracy analysis

 $x \sim N(0,1)$ Standard Normal distribution

T Estimate the mean value μ_x by Monte Carlo analysis

Our question: how accurate is the estimated µ_x (dependent on the number of Monte Carlo samples)?

- Monte Carlo analysis for the mean value µ_x
 - **Randomly draw M sampling points** $\{x^{(1)}, x^{(2)}, ..., x^{(M)}\}$
 - **¬** Estimate μ_x by the following equation

$$\mu_x = \frac{x^{(1)} + x^{(2)} + \dots + x^{(M)}}{M}$$
 Called an estimator

Assumptions in our accuracy analysis

- Each x⁽ⁱ⁾ is random and satisfies standard Normal distribution it is randomly created for x ~ N(0,1)
- All x⁽ⁱ⁾'s are mutually independent samples from a good random number generator should be independent
- \blacksquare μ_x is a function of $\{x^{(1)}, x^{(2)}, \dots, x^{(M)}\}$, which is a random variable

• Mean of μ_{x} $E\{\mu_{x}\} = E\left\{\frac{x^{(1)} + x^{(2)} + \dots + x^{(M)}}{M}\right\} = \frac{E\left\{x^{(1)}\right\} + E\left\{x^{(2)}\right\} + \dots + E\left\{x^{(M)}\right\}}{M} = 0$ \downarrow $E\{x^{(i)}\} = 0$

• Variance of μ_x

• $E\{\mu_x\} = 0$

u_x is an unbiased estimator

 Otherwise, if the estimator mean is not equal to the actual mean, it is called a biased estimator

• $E\{\mu_x^2\} = 1/M$

Variance decreases as M increases

Distributions of µ_x for different M values

"Average" estimation accuracy is better when using larger M

In this μ_x example

T If we require that ± 3 sigma of μ_x is within [-0.1, 0.1]

$$\frac{3}{\sqrt{M}} \le 0.1 \qquad \qquad M \ge 900$$

< If we require that ± 3 sigma of μ_x is within [-0.01, 0.01]

$$\frac{3}{\sqrt{M}} \le 0.01 \qquad \qquad \qquad M \ge 90000$$

- Accuracy is improved by 10x if the number of samples is increased by 100x
- IK ~ 10K sampling points are typically required to achieve reasonable accuracy
- However, even if you use 10K sampling points, an accurate result is not guaranteed!
 - Monte Carlo analysis is random, and you can be unlucky (e.g., going beyond ±3 sigma range)

Summary

- Monte Carlo analysis
 - Random variable
 - Probability distribution
 - Random sampling