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Overview 

 Monte Carlo Analysis 
 Random variable 
 Probability distribution 
 Random sampling 
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Random Variables 

 A random variable is a real-valued function of the outcome of 
the experiment 

x (random variable) = 

+1.0 (Experiment 1) 
 
−0.3 (Experiment 2) 
 
... 
 
−2.4 (Experiment N) 

We get different results from different experiments (i.e., 
the output is random) 
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Probability Distribution 

 A continuous random variable x is defined by its probability 
distribution function 
 

 Probability density function (PDF) 
 pdfx(tx) denotes the probability per unit 

length near x = tx 

 
 
 

 Cumulative distribution function (CDF) 
 cdfx(tx) equals the probability of x ≤ tx 
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Expectation 

 Given a random variable x and a function f(x), the expectation 
of f(x) is the weighted average of the possible values of f(x) 
 
 
 
 

 A useful equation for expected value calculation 
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Mean, Variance and Standard Deviation 

 Mean 
 
 

 Variance 
 
 
 

 Standard deviation 
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Mean, Variance and Standard Deviation 

 Mean measures the “average position” of x 
 
 
 
 

 Variance measures the “spread” of the distribution 
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Moments and Central Moments 

 k-th order moment 
 
 
 
 

 Mean is the first order moment 

 
 k-th order central moments 

 
 
 
 

 Variance is the second order central moment 
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Normal Distribution 

 A random variable x is Normal if 
 
 
 
 

 μ: mean 
 σ: standard deviation 
 Denoted as N(μ, σ2) 

 
 
 

 If μ = 0 and σ = 1, it is called standard Normal distribution 
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Why is Normal distribution important to us? 
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Normal Distribution 

 Many physical variations are Normal 
 

 Central limit theorem: the variation caused by a large number 
of independent random factors is “almost” Normal 
 

1xy = 21 xxy +=

Assume that all xi’s are independent and have the same uniform distribution 

54321 xxxxxy ++++=

-0.5 0 0.5
0

200

400

600

y

# 
of

 S
am

pl
es

-1 -0.5 0 0.5 1
0

200

400

600

800

1000

y

# 
of

 S
am

pl
es

-4 -2 0 2 4
0

500

1000

1500

y

# 
of

 S
am

pl
es



Slide 11   

Multiple Random Variables 

 Two continuous random variables x and y are defined by their 
joint probability distribution 
 

 Joint probability density function 
 
 
 

 Joint cumulative distribution function 
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Applicable to more than two random variables 
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Joint Probability Distribution 

 Example: bivariate Normal distribution 

Joint probability density function Joint cumulative distribution function 
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Marginal Distribution Function 

 Marginal probability density function 
 
 
 
 
 

 Marginal cumulative distribution function 
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Marginal Distribution Function 

 Example: bivariate Normal distribution 

Marginal 
PDF for x Marginal 

PDF for y 
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Covariance and Correlation 

 Covariance 
 
 

 If COV[x,y] = 0, then x and y are uncorrelated 

 
 Covariance matrix 

 
 
 
 

 Σ is always symmetric 
 Diagonal components are corresponding to variance values 
 Σ is diagonal if x and y are uncorrelated 
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Covariance and Correlation 

 Correlation (normalized covariance) 
 
 
 
 

 Correlation between two random variables can be visualized 
by scatter plot 
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Covariance and Correlation 

 Example: correlated random variables 
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Monte Carlo Analysis 

 Problem definition 
 Find probability distribution and/or moments of 

 
 
 
 

 In general, the distribution and/or moments of f cannot be 
calculated analytically, because 
 f(X) is nonlinear 
 f(X) may not have closed-form expression (we can only 

numerically calculate f for a given X value) 

( )Xf

Function of 
interest 

Random variable with 
known distribution 
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Monte Carlo Analysis 

 Monte Carlo analysis for f(X) 
 Randomly select M samples for X 
 Evaluate function f(X) at each sampling point 
 Estimate distribution of f using these M samples 

 

Distribution of 
f(X) 

Evaluate 
f(X) 

Random samples 
{X(1), X(2), ...} 

Samples of f(X) 
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Monte Carlo Analysis Example 

 Example: estimate the probability distribution of 
 
 
 

 x ~ N(0,1) (standard Normal distribution) 

( )xy exp=
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Monte Carlo Analysis Example 

 Step 1: draw random samples for x 

 
 
 
 

 Step 2: calculate y at each sampling point 

Samples 1 2 3 4 5 6 ... 
x -0.4326 -1.6656 0.1253 0.2877 -1.1465 1.1909 ... 

M random samples for x 

M random samples for y 

Samples 1 2 3 4 5 6 ... 
y 0.6488 0.1891 1.1335 1.3333 0.3178 3.2901 ... 
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Monte Carlo Analysis Result 

 Monte Carlo result is typically represented by a histogram 
 A big table of data is not intuitive 

Histogram of y based on 1000 random samples 

QUESTION:  how accurate is Monte Carlo analysis? 
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Monte Carlo Analysis Accuracy 

 Monte Carlo analysis is not deterministic 
 We cannot get identical results when running MC twice 
 The analysis error is not deterministic 

 

 Monte Carlo accuracy depends on the number of samples 
 Examples: histogram of y 

100 samples 1000 samples 10000 samples 
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Monte Carlo Analysis Accuracy 

 Example: bivariate Normal distribution 
 x and y are independent and jointly standard Normal 
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Monte Carlo Analysis Accuracy 

 Statistical methods exist to analyze Monte Carlo accuracy 
 

 Example: Monte Carlo accuracy analysis 
 
 
 

 Estimate the mean value μx by Monte Carlo analysis 
 Our question: how accurate is the estimated μx (dependent on 

the number of Monte Carlo samples)? 

( )1,0~ Nx Standard Normal distribution 
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Monte Carlo Analysis Accuracy 

 Monte Carlo analysis for the mean value μx 
 Randomly draw M sampling points {x(1),x(2),...,x(M)} 
 Estimate μx by the following equation 

 
 
 

 Assumptions in our accuracy analysis 
 Each x(i) is random and satisfies standard Normal distribution – 

it is randomly created for x ~ N(0,1) 
 All x(i)’s are mutually independent – samples from a good 

random number generator should be independent 

 
 μx is a function of {x(1),x(2),...,x(M)}, which is a random variable 
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Monte Carlo Analysis Accuracy 

 Mean of μx 

 
 
 
 
 

 Variance of μx 
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Monte Carlo Analysis Accuracy 

 E{μx} = 0 
 ux is an unbiased estimator 
 Otherwise, if the estimator mean is not equal to the actual 

mean, it is called a biased estimator 
 

 E{μx
2} = 1/M 

 Variance decreases as M increases 
 Distributions of μx for different M values 
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Monte Carlo Analysis Accuracy 

 “Average” estimation accuracy is better when using larger M 
 

 In this μx example 
 If we require that  ±3 sigma of μx is within [-0.1, 0.1] 

 
 
 
 

 If we require that ±3 sigma of μx is within [-0.01, 0.01] 
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Monte Carlo Analysis Accuracy 

 Accuracy is improved by 10x if the number of samples is 
increased by 100x 
 

 1K ~ 10K sampling points are typically required to achieve 
reasonable accuracy 
 

 However, even if you use 10K sampling points, an accurate 
result is not guaranteed! 
 Monte Carlo analysis is random, and you can be unlucky (e.g., 

going beyond ±3 sigma range) 
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Summary 

 Monte Carlo analysis 
 Random variable 
 Probability distribution 
 Random sampling 
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