CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

■ Conjugate Gradient Method (Part 4)

- Pre-conditioning
v Nonlinear conjugate gradient method

Conjugate Gradient Method

- Step 1: start from an initial guess $X^{(0)}$, and set $k=0$
- Step 2: calculate

$$
D^{(0)}=R^{(0)}=B-A X^{(0)}
$$

■ Step 3: update solution

$$
X^{(k+1)}=X^{(k)}+\mu^{(k)} D^{(k)} \quad \text { where } \quad \mu^{(k)}=\frac{D^{(k) T} R^{(k)}}{D^{(k) T} A D^{(k)}}
$$

- Step 4: calculate residual

$$
R^{(k+1)}=R^{(k)}-\mu^{(k)} A D^{(k)}
$$

■ Step 5: determine search direction

$$
D^{(k+1)}=R^{(k+1)}+\beta_{k+1, k} D^{(k)} \quad \text { where } \quad \beta_{k+1, k}=\frac{R^{(k+1) T} R^{(k+1)}}{D^{(k) T} R^{(k)}}
$$

■ Step 6: set $\mathrm{k}=\mathrm{k}+1$ and go to Step 3

Convergence Rate

$$
\left\|X^{(k+1)}-X\right\| \leq\left[\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right]^{k} \cdot\left\|X^{(0)}-X\right\|
$$

\square Conjugate gradient method has slow convergence if $k(A)$ is large
v l.e., $A X=B$ is ill-conditioned

■ In this case, we want to improve convergence rate by preconditioning

Pre-Conditioning

■ Key idea
, Convert $A X=B$ to another equivalent equation $\tilde{A} \tilde{X}=\tilde{B}$
volve $\tilde{A} \tilde{X}=\tilde{B}$ by conjugate gradient method

■ Important constraints to construct $\tilde{A} \tilde{X}=\tilde{B}$
, \tilde{A} is symmetric and positive definite - so that we can solve it by conjugate gradient method

- Ã has a small condition number - so that we can achieve fast convergence

Pre-Conditioning

$$
\begin{gathered}
A X=B \\
L^{-1} A \cdot X=L^{-1} B \\
\frac{L^{-1} A L^{-T}}{\downarrow} \cdot \frac{L^{T} X}{\downarrow}=\frac{L^{-1} B}{\downarrow} \\
\tilde{\mathrm{~A}}
\end{gathered}
$$

$\square L^{-1} A L^{-T}$ is symmetric and positive definite, if A is symmetric and positive definite

$$
\begin{gathered}
\left(L^{-1} A L^{-T}\right)^{T}=L^{-1} A L^{-T} \\
X^{T} L^{-1} A L^{-T} X=\left(L^{-T} X\right)^{T} \cdot A \cdot\left(L^{-T} X\right)>0
\end{gathered}
$$

Pre-Conditioning

$$
\frac{L^{-1} A L^{-T}}{\tilde{\mathrm{~A}}} \cdot \frac{L^{T} X}{\tilde{\mathrm{X}}}=\frac{L^{-1} B}{\tilde{\mathrm{~B}}}
$$

$■ \mathrm{~L}^{-1} \mathrm{AL}^{-\top}$ has a small condition number, if L is properly selected

■ In theory, L can be optimally found by Cholesky decomposition

$$
\begin{gathered}
A=L L^{T} \\
L^{-1} A L^{-T}=L^{-1} \cdot L L^{T} \cdot L^{-T}=I \quad \text { (Identify matrix) }
\end{gathered}
$$

- However, Cholesky decomposition is not efficient for large, sparse problems
\checkmark If we know Cholesky decomposition, we almost solve the equation - no need to use conjugate gradient method

Pre-Conditioning

$$
\frac{L^{-1} A L^{-T}}{\tilde{A}} \cdot \frac{L^{T} X}{\tilde{\mathrm{X}}}=\frac{L^{-1} B}{\tilde{\mathrm{~B}}}
$$

■ In practice, L can be constructed in many possible ways

■ Diagonal pre-conditioning (or Jacobi pre-conditioning)
v Scale A along coordinate axes

$$
L=\left[\begin{array}{lll}
\sqrt{a_{11}} & & \\
& \sqrt{a_{22}} & \\
& & \ddots
\end{array}\right]
$$

Pre-Conditioning

$$
\frac{L^{-1} A L^{-T}}{\tilde{\mathrm{~A}}} \cdot \frac{L^{T} X}{\tilde{\mathrm{X}}}=\frac{L^{-1} B}{\tilde{\mathrm{~B}}}
$$

■ Incomplete Cholesky pre-conditioning

$$
L=\left[\begin{array}{ccc}
\times & & \\
\times & \times & \\
\times & \times & \ddots
\end{array}\right]
$$

$\checkmark \mathrm{L}$ is lower-triangular
v Few or no fill-ins are allowed
, $\mathrm{A} \approx \mathrm{LL}^{\top}$ (not exactly equal)

Pre-Conditioning

■ Step 1: start from an initial guess $\tilde{\mathrm{X}}^{(0)}$, and set $\mathrm{k}=0$
■ Step 2: calculate

$$
\tilde{D}^{(0)}=\tilde{R}^{(0)}=L^{-1} B-L^{-1} A L^{-T} \tilde{X}^{(0)}
$$

■ Step 3: update solution

$$
\tilde{X}^{(k+1)}=\tilde{X}^{(k)}+\tilde{\mu}^{(k)} \tilde{D}^{(k)} \quad \text { where } \quad \tilde{\mu}^{(k)}=\frac{\tilde{D}^{(k)} \tilde{R}^{(k)}}{\tilde{D}^{(k)} L^{-1} A L^{-T} D^{(k)}}
$$

- Step 4: calculate residual

$$
\tilde{R}^{(k+1)}=\tilde{R}^{(k)}-\tilde{\mu}^{(k)} L^{-1} A L^{-T} \tilde{D}^{(k)}
$$

■ Step 5: determine search direction

$$
\tilde{D}^{(k+1)}=\tilde{R}^{(k+1)}+\tilde{\beta}_{k+1, k} \tilde{D}^{(k)} \quad \text { where } \quad \tilde{\beta}_{k+1, k}=\frac{\tilde{R}^{(k+1)} \widetilde{D^{(k+1)}}}{\tilde{D}^{(k)} \tilde{R}^{(k)}}
$$

■ Step 6: set $\mathrm{k}=\mathrm{k}+1$ and go to Step 3

Pre-Conditioning

$$
\begin{aligned}
& \frac{L^{-1} A L^{-T}}{\tilde{\mathrm{~A}}} \cdot \frac{L^{T} X}{\tilde{\mathrm{X}}}=\frac{L^{-1} B}{\tilde{\mathrm{~B}}} \\
& \tilde{D}^{(0)}=\widetilde{R}^{(0)}=L^{-1} B-L^{-1} A L^{-T} \tilde{X}^{(0)} \\
& \tilde{X}^{(k+1)}=\tilde{X}^{(k)}+\tilde{\mu}^{(k)} \tilde{D}^{(k)} \quad \text { where } \quad \tilde{\mu}^{(k)}=\frac{\tilde{D}^{(k) T} \tilde{R}^{(k)}}{\tilde{D}^{(k) T} L^{-1} A L^{-T} \tilde{D}^{(k)}} \\
& \tilde{R}^{(k+1)}=\tilde{R}^{(k)}-\tilde{\mu}^{(k)} L^{-1} A L^{-T} \tilde{D}^{(k)} \\
& \tilde{D}^{(k+1)}=\widetilde{R}^{(k+1)}+\widetilde{\beta}_{k+1, k} \tilde{D}^{(k)} \quad \text { where } \quad \tilde{\beta}_{k+1, k}=\frac{\tilde{R}^{(k+1) T} \tilde{R}^{(k+1)}}{\widetilde{D}^{(k) T} \widetilde{R}^{(k)}}
\end{aligned}
$$

$\square L^{-1}$ should not be explicitly computed
\checkmark Instead, $\mathrm{Y}=\mathrm{L}^{-1} \mathrm{~W}$ or $\mathrm{Y}=\mathrm{L}^{-\mathrm{T}} \mathrm{W}$ (where W is a vector) should be computed by solving linear equation $L Y=W$ or $L^{\top} Y=W$

Pre-Conditioning

■ Diagonal pre-conditioning
$\nabla \mathrm{L}$ is a diagonal matrix
v $\mathrm{Y}=\mathrm{L}^{-1} \mathrm{~W}$ or $\mathrm{Y}=\mathrm{L}^{-\top} \mathrm{W}$ can be found by simply scaling

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\sqrt{a_{11}} & & \\
& \sqrt{a_{22}} & \\
& & \ddots
\end{array}\right] \cdot[Y]=[W]} \\
y_{1}=w_{1} / \sqrt{a_{11}} \\
y_{2}=w_{2} / \sqrt{a_{22}}
\end{gathered}
$$

Pre-Conditioning

■ Incomplete Cholesky pre-conditioning
$\checkmark \mathrm{L}$ is lower-triangular
$\mathrm{Y}=\mathrm{L}^{-1} \mathrm{~W}$ or $\mathrm{Y}=\mathrm{L}^{-\top} \mathrm{W}$ can be found by backward substitution

$$
\left[\begin{array}{lll}
l_{11} & & \\
l_{21} & l_{22} & \\
l_{31} & l_{32} & \ddots
\end{array}\right] \cdot[Y]=[W]
$$

$$
\begin{gathered}
y_{1}=w_{1} / l_{11} \\
y_{2}=\left(w_{2}-l_{21} y_{1}\right) / l_{22}
\end{gathered}
$$

Pre-Conditioning

$$
\frac{L^{-1} A L^{-T}}{\tilde{A}} \cdot \frac{L^{T} X}{\tilde{X}}=\frac{L^{-1} B}{\tilde{\mathrm{~B}}}
$$

- Once \tilde{X} is known, X is calculated as $\mathrm{X}=\mathrm{L}^{-T} \tilde{X}$
\checkmark Solve linear equation $L^{-\top} \mathrm{X}=\tilde{\mathrm{X}}$ by backward substitution

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\sqrt{a_{11}} & 0 & 0 \\
& \sqrt{a_{22}} & 0 \\
& \ddots
\end{array}\right] \cdot[X]=[\tilde{X}]} \\
x_{1}=\tilde{x}_{1} / \sqrt{a_{11}} \\
x_{2}=\tilde{x}_{2} / \sqrt{a_{22}} \\
\vdots \\
\text { Diagonal pre-conditioning }
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
l_{11} & l_{21} & l_{31} \\
& l_{22} & l_{32} \\
& & \ddots
\end{array}\right] \cdot[X]=[\tilde{X}]} \\
x_{N}=\tilde{X}_{N} / l_{N N} \\
x_{N-1}=\left(\tilde{X}_{N-1}-l_{N, N-1} X_{N}\right) / l_{N-1, N-1}
\end{gathered}
$$

Incomplete Cholesky preconditioning

Nonlinear Conjugate Gradient Method

■ Conjugate gradient method can be extended to general (i.e., non-quadratic) unconstrained nonlinear optimization

$$
\min _{X} \frac{1}{2} X^{T} A X-B^{T} X+C \quad \min _{X} f(X)
$$

Quadratic programming

- A number of changes must be made to solve nonlinear optimization problems

Nonlinear Conjugate Gradient Method

- Step 1: start from an initial guess $X^{(0)}$, and set $\mathrm{k}=0$

■ Step 2: calculate

$$
D^{(0)}=R^{(0)}=B-A X^{(0)}
$$

■ Step 3: update solution

$$
X^{(k+1)}=X^{(k)}+\mu^{(k)} D^{(k)} \quad \text { where } \quad \mu^{(k)}=\frac{D^{(k) r} R^{(k)}}{D^{(k) T} A D^{(k)}}
$$

■ Step 4: calculate residual

$$
R^{(k+1)}=R^{(k)}-\mu^{(k)} A D^{(k)}
$$

■ Step 5: determine search direction

$$
D^{(k+1)}=R^{(k+1)}+\beta_{k+1, k} D^{(k)} \text { where } \quad \beta_{k+1, k}=\frac{R^{(k+1) T} R^{(k+1)}}{D^{(k) T} R^{(k)}}
$$

■ Step 6: set $\mathrm{k}=\mathrm{k}+1$ and go to Step 3

Nonlinear Conjugate Gradient Method

- New definition of residual

$$
\begin{gathered}
D^{(0)}=R^{(0)}=B-A X^{(0)} \\
R^{(k+1)}=R^{(k)}-\mu^{(k)} A D^{(k)}
\end{gathered}
$$

Quadratic programming

$$
R^{(k)}=-\nabla f\left[X^{(k)}\right]
$$

Nonlinear programming

■ "Residual" is defined by the gradient of $f(X)$
∇ If X^{\star} is optimal, $\nabla f\left(X^{\star}\right)=0$
$v-\nabla f\left(X^{*}\right)=B-A X$ for quadratic programming

Nonlinear Conjugate Gradient Method

- New formula for conjugate search directions

$$
D^{(k+1)}=R^{(k+1)}+\beta_{k+1, k} D^{(k)} \quad \text { where } \quad \beta_{k+1, k}=\frac{R^{(k+1) \Gamma} R^{(k+1)}}{D^{(k) T} R^{(k)}}
$$

Quadratic programming

■ Ideally, search directions should be computed by GramSchmidt conjugation of residues
v In practice, we often use approximate formulas

$$
\beta_{k+1, k}=\frac{R^{(k+1) T} R^{(k+1)}}{R^{(k) T} R^{(k)}}
$$

Fletcher-Reeves formula

$$
\beta_{k+1, k}=\frac{R^{(k+1) T} \cdot\left[R^{(k+1)}-R^{(k)}\right]}{R^{(k) T} R^{(k)}}
$$

Polak-Ribiere formula

Nonlinear Conjugate Gradient Method

■ Optimal step size calculated by one-dimensional search

$$
X^{(k+1)}=X^{(k)}+\mu^{(k)} D^{(k)} \quad \text { where } \quad \mu^{(k)}=\frac{D^{(k) T} R^{(k)}}{D^{(k) T} A D^{(k)}}
$$

Quadratic programming

- $\mu^{(k)}$ cannot be calculated analytically
\checkmark Optimize $\mu^{(k)}$ by one-dimensional search

$$
\min _{\mu^{(k)}} f\left[X^{(k+1)}\right]=f\left[X^{(k)}+\mu^{(k)} D^{(k)}\right]
$$

Nonlinear Conjugate Gradient Method

- Step 1: start from an initial guess $X^{(0)}$, and set $\mathrm{k}=0$

■ Step 2: calculate

$$
D^{(0)}=R^{(0)}=-\nabla f\left[X^{(0)}\right]
$$

■ Step 3: update solution

$$
\min _{\mu^{(k)}} f\left[X^{(k)}+\mu^{(k)} D^{(k)}\right] \quad X^{(k+1)}=X^{(k)}+\mu^{(k)} D^{(k)}
$$

■ Step 4: calculate residual

$$
R^{(k+1)}=-\nabla f\left[X^{(k+1)}\right]
$$

■ Step 5: determine search direction (Fletcher-Reeves formula)

$$
\beta_{k+1, k}=\frac{R^{(k+1) T} R^{(k+1)}}{R^{(k) T} R^{(k)}}
$$

$$
D^{(k+1)}=R^{(k+1)}+\beta_{k+1, k} D^{(k)}
$$

■ Step 6: set $\mathrm{k}=\mathrm{k}+1$ and go to Step 3

Nonlinear Conjugate Gradient Method

- Gradient method, conjugate gradient method and Newton method
- Conjugate gradient method is often preferred for many practical large-scale engineering problems

	Gradient	Conjugate Gradient	Newton
1st-Order Derivative	Yes	Yes	Yes
2nd-Order Derivative	No	No	Yes
Pre-conditioning	No	Yes	No
Cost per Iteration	Low	Low	High
Convergence Rate	Slow	Fast	Fast
Preferred Problem Size	Large	Large	Small

Summary

■ Conjugate gradient method (Part 4)
\checkmark Pre-conditioning
v Nonlinear conjugate gradient method

