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m Conjugate Gradient Method (Part 4)

N Pre-conditioning
~ Nonlinear conjugate gradient method
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Conjugate Gradient Method

m Step 1: start from an initial guess X©), and set k =0
m Step 2: calculate

DO _RO _g_aAx©
m Step 3: update solution

DT RK)

(k+1) — y (k) o, (K)py(k) (k) _
XU = XY+ 4D where u = DT AD®

m Step 4: calculate residual
Rk+1) _ pk) —,u(k)AD(k)

m Step 5: determine search direction
R(k+l)T R(k+1)

DT R(K)

D(k+1) — R(k+1) +ﬂk+1,kD(k) Where ﬂk+1,k —

m Step 6: setk=k+ 1 and go to Step 3
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Convergence Rate

el AT -

erl

m Conjugate gradient method has slow convergence if kK(A) is large
< l.e., AX = B is ill-conditioned

m In this case, we want to improve convergence rate by pre-
conditioning

Slide 4



Pre-Conditioning

m Key idea
~ Convert AX = B to another equivalent equation AX = B
~ Solve AX = B by conjugate gradient method

m Important constraints to construct AX = B

< A is symmetric and positive definite — so that we can solve it
by conjugate gradient method

< A has a small condition number — so that we can achieve fast
convergence
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Pre-Conditioning

AX =B
L*A-X =L"'B

L*ALT -L'X =L'B

~ ~ ~

A X B

m LAL-Tis symmetric and positive definite, if A is symmetric
and positive definite

(L*ALT) =LtALT

XTLPALTX =(L"X) -A-(LTX)>0
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Pre-Conditioning

L*ALT -L'X =L"'B

A X B
m L'AL-T has a small condition number, if L is properly selected

m In theory, L can be optimally found by Cholesky decomposition

A=LL
LA =L LT -7 =1 (Identify matrix)

“ However, Cholesky decomposition is not efficient for large,
sparse problems

~ If we know Cholesky decomposition, we almost solve the
equation — no need to use conjugate gradient method
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Pre-Conditioning

L*ALT -L'X =L"'B

A X B
m In practice, L can be constructed in many possible ways

m Diagonal pre-conditioning (or Jacobi pre-conditioning)
N Scale A along coordinate axes

Jau
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Pre-Conditioning

L*ALT -L'X =L"'B

A X B
m Incomplete Cholesky pre-conditioning

< L is lower-triangular
N Few or no fill-ins are allowed
< A= LLT (not exactly equal)
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Pre-Conditioning

m Step 1: start from an initial guess X©, and set k = 0
m Step 2: calculate

D@ =RO =B L*ALT X
m Step 3: update solution

~E=3
= 1) _ ), ~(KRK) ~x_ DR
XU =X+ u™'DY  where u B CIENELG

m Step 4: calculate residual
Rk — RK) —[l(k)L_lAL_T D k)

m Step 5: determine search direction

S (k+1)T o (k+1)
k) _ Bke) . 5 AK) ~ _R7R
D™ =R™+ 4, DY where S, = D« R

m Step 6: setk=k+ 1 and go to Step 3
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Pre-Conditioning

L*ALT -L'X =L"'B

A X B

D@ =RO =B L*ALT X

(k)T B ()
S () _ T K) . =(0RK) ~x_ DR
XU =X+ u™'DY  where u L CIENELG

Rk —_ RK) _ ) 1o -TDK

S (k+1)T 5 (k+1)
S(k+1) _ p(k+1 0 ~ (k) 3 = R X
D( ) _ R )+;Bk+1,kD where ,Bk+1,k — S(k)T ﬁ(k)

m L~! should not be explicitly computed

“Instead, Y = LW or Y = L-TW (where W is a vector) should be
computed by solving linear equation LY =W or LTY =W
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Pre-Conditioning

m Diagonal pre-conditioning
< L is a diagonal matrix
<Y =LWorY =LTW can be found by simply scaling

™

a,, 1Y [=|W
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Pre-Conditioning

m Incomplete Cholesky pre-conditioning
L is lower-triangular
<Y =L1WorY =LTW can be found by backward substitution

Yi = W1/|11
Y, = (Wz - |21y1)/|22
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Pre-Conditioning

L*ALT -L'X =L"'B

~

A

m Once X is known, X is calculated as X = L-TX

~ Solve linear equation L-TX = X by backward substitution

0 O][ ]
Jam 0 f|x|-

Diagonal pre-conditioning

X

Xn-1 :(

Ill

|21 |31

I22 |32 | X | =

>

Xn = Xy /INN
XNo1 — IN,N—1XN )/IN—l,N—l

Incomplete Cholesky pre-

conditioning
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Nonlinear Conjugate Gradient Method

m Conjugate gradient method can be extended to general (i.e.,
non-quadratic) unconstrained nonlinear optimization

min S XTAX —BTX +C min  f(X)
X 2 X
Nonlinear programming
X =A"B

Quadratic programming

m A number of changes must be made to solve nonlinear
optimization problems

Slide 15



Nonlinear Conjugate Gradient Method

m Step 2: calculate

DO _RO _g_aAx©
m Step 3: update solution

m Step 1: start from an initial guess X©), and set k =0

X k0 = x )4 0D where [ 0 =

DT RK)

DT ApD®)

m Step 4: calculate residual
Rk+1) _ pk) —,u(k)AD(k)
m Step 5: determine search direction

D(k+1) = R(k+1) +ﬂk+l,kD(k) Where ﬂk+l,k —

R(k+l)T R(k+1)

DT R(K)

m Step 6: setk=k+ 1 and go to Step 3
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Nonlinear Conjugate Gradient Method

m New definition of residual

D© _RO _B_AxX©®

W _ s [y ©)
Rk Z R _ (0 oD RI = —vf[x ")

Quadratic programming Nonlinear programming

m “Residual” is defined by the gradient of f(X)
“If X* is optimal, Vf(X*) =0
< -V{(X*) = B — AX for quadratic programming
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Nonlinear Conjugate Gradient Method

m New formula for conjugate search directions
R(k+1)T R(k+1)

K+ K+ k
Dk — Rl l)+,3k+1,kD() where B, = DT RK)

Quadratic programming

m |deally, search directions should be computed by Gram-
Schmidt conjugation of residues
~ In practice, we often use approximate formulas

R(k)T R(k+1) Rk [R(k+1) _ R(k)]
P = RITRK) Peaw = RITRK)
Fletcher-Reeves formula Polak-Ribiere formula
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Nonlinear Conjugate Gradient Method

m Optimal step size calculated by one-dimensional search

DT R(K)
DT AD®)

X k0 = x )4 D) where 1,0 =

Quadratic programming

m p® cannot be calculated analytically
~ Optimize u® by one-dimensional search

T(Ik)n f[x (k+1)]: f[X (k)_|_lu(k)D(k):|
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Nonlinear Conjugate Gradient Method

m Step 1: start from an initial guess X©), and set k =0
m Step 2: calculate

DO = RO) _ _y¢ [X (0)]
m Step 3: update solution

mir £+ 4 ©DW] X (641) _ x (04 0050
m Step 4: calculate residual

R(k+1) _ _vf [X (k+1)]
m Step 5: determine search direction (Fletcher-Reeves formula)

R(k+1)T R(k+1)
Pk = RTR()

D(k+l) — R(k+l) +ﬂk+l,kD(k)

m Step 6: setk=k+ 1 and go to Step 3
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Nonlinear Conjugate Gradient Method

m Gradient method, conjugate gradient method and Newton method

N Conjugate gradient method is often preferred for many practical
large-scale engineering problems

Gradient Conjugate Newton
Gradient

1st-Order Derivative Yes Yes Yes
2nd-Order Derivative No No Yes

Pre-conditioning No Yes No
Cost per Iteration Low Low High
Convergence Rate Slow Fast Fast
Preferred Problem Size Large Large Small




m Conjugate gradient method (Part 4)
N Pre-conditioning
~ Nonlinear conjugate gradient method
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