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Overview 

 Conjugate Gradient Method (Part 4) 
 Pre-conditioning 
 Nonlinear conjugate gradient method 
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Conjugate Gradient Method 

 Step 1: start from an initial guess X(0), and set k = 0 

 Step 2: calculate 
 

 Step 3: update solution 
 
 

 Step 4: calculate residual 
 

 Step 5: determine search direction 
 
 

 Step 6: set k = k + 1 and go to Step 3 
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Convergence Rate 

 
 
 

 Conjugate gradient method has slow convergence if κ(A) is large 
 I.e., AX = B is ill-conditioned 

 
 In this case, we want to improve convergence rate by pre-

conditioning 
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Pre-Conditioning 

 Key idea 
 Convert AX = B to another equivalent equation ÃX̃ = B̃ 
 Solve ÃX̃ = B̃ by conjugate gradient method 

 
 Important constraints to construct ÃX̃ = B̃ 

 Ã is symmetric and positive definite – so that we can solve it 
by conjugate gradient method 

 Ã has a small condition number – so that we can achieve fast 
convergence  
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Pre-Conditioning 

 
 
 
 
 
 

 L−1AL−T is symmetric and positive definite, if A is symmetric 
and positive definite 

BAX =

BLXLALL TT 11 −−− =⋅

BLXAL 11 −− =⋅

A ̃ X̃ B ̃

( ) TTT ALLALL −−−− = 11

( ) ( ) 01 >⋅⋅= −−−− XLAXLXALLX TTTTT
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Pre-Conditioning 

 
 

 L−1AL−T has a small condition number, if L is properly selected 
 

 In theory, L can be optimally found by Cholesky decomposition 
 
 
 
 
 

 However, Cholesky decomposition is not efficient for large, 
sparse problems 

 If we know Cholesky decomposition, we almost solve the 
equation – no need to use conjugate gradient method 

TLLA =

ILLLLALL TTT =⋅⋅= −−−− 11 (Identify matrix) 

BLXLALL TT 11 −−− =⋅

A ̃ X̃ B ̃
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Pre-Conditioning 

 
 

 In practice, L can be constructed in many possible ways 
 

 Diagonal pre-conditioning (or Jacobi pre-conditioning) 
 Scale A along coordinate axes 
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Pre-Conditioning 

 
 

 Incomplete Cholesky pre-conditioning 
 
 
 
 
 

 L is lower-triangular 
 Few or no fill-ins are allowed 
 A ≈ LLT (not exactly equal) 
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Pre-Conditioning 

 Step 1: start from an initial guess X̃(0), and set k = 0 

 Step 2: calculate 
 

 Step 3: update solution 
 
 

 Step 4: calculate residual 
 

 Step 5: determine search direction 
 
 

 Step 6: set k = k + 1 and go to Step 3 
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Pre-Conditioning 

 
 
 
 
 
 
 
 
 

 L−1 should not be explicitly computed 
 Instead, Y = L−1W or Y = L−TW (where W is a vector) should be 

computed by solving linear equation LY = W or LTY = W 
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Pre-Conditioning 

 Diagonal pre-conditioning 
 L is a diagonal matrix 
 Y = L−1W or Y = L−TW can be found by simply scaling 
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Pre-Conditioning 

 Incomplete Cholesky pre-conditioning 
 L is lower-triangular 
 Y = L−1W or Y = L−TW can be found by backward substitution 
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Pre-Conditioning 

 
 

 Once X̃ is known, X is calculated as X = L−TX̃ 
 Solve linear equation L−TX = X̃ by backward substitution  

BLXLALL TT 11 −−− =⋅

A ̃ X̃ B ̃
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Nonlinear Conjugate Gradient Method 

 Conjugate gradient method can be extended to general (i.e., 
non-quadratic) unconstrained nonlinear optimization 
 
 
 
 
 
 

 A number of changes must be made to solve nonlinear 
optimization problems 
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Nonlinear Conjugate Gradient Method 

 Step 1: start from an initial guess X(0), and set k = 0 

 Step 2: calculate 
 

 Step 3: update solution 
 
 

 Step 4: calculate residual 
 

 Step 5: determine search direction 
 
 

 Step 6: set k = k + 1 and go to Step 3 
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Nonlinear Conjugate Gradient Method 

 New definition of residual 
 
 
 
 
 

 “Residual” is defined by the gradient of f(X) 
 If X* is optimal, ∇f(X*) = 0 
 −∇f(X*) = B − AX for quadratic programming 
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Nonlinear Conjugate Gradient Method 

 New formula for conjugate search directions 
 
 
 
 

 Ideally, search directions should be computed by Gram-
Schmidt conjugation of residues 
 In practice, we often use approximate formulas 
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Nonlinear Conjugate Gradient Method 

 Optimal step size calculated by one-dimensional search 
 
 
 
 

 µ(k) cannot be calculated analytically 
 Optimize µ(k) by one-dimensional search 
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Nonlinear Conjugate Gradient Method 

 Step 1: start from an initial guess X(0), and set k = 0 

 Step 2: calculate 
 

 Step 3: update solution 
 
 

 Step 4: calculate residual 
 

 Step 5: determine search direction (Fletcher-Reeves formula) 
 
 

 Step 6: set k = k + 1 and go to Step 3 
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Nonlinear Conjugate Gradient Method 

 Gradient method, conjugate gradient method and Newton method 
 Conjugate gradient method is often preferred for many practical 

large-scale engineering problems 

Gradient Conjugate 
Gradient Newton 

1st-Order Derivative Yes Yes Yes 
2nd-Order Derivative No No Yes 

Pre-conditioning No Yes No 
Cost per Iteration Low Low High 
Convergence Rate Slow Fast Fast 

Preferred Problem Size Large Large Small 
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Summary 

 Conjugate gradient method (Part 4) 
 Pre-conditioning 
 Nonlinear conjugate gradient method 
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