CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

■ Conjugate Gradient Method (Part 1)
, Quadratic programming
, Gradient method
v Orthogonal search direction

Linear Equation

- Linear equation

$$
A X=B
$$

- A is symmetric and positive definite
- Can be solved by Cholesky decomposition
- However, Cholesky decomposition (or Gaussian elimination in general) is not efficient if A is large and sparse

Linear Equation

- A matrix is sparse if it contains a large number of zero elements

- Sparse matrix can be saved with small memory requirements
- We do not explicitly save zero elements
ve only save non-zero values and their locations

Linear Equation

■ Cholesky decomposition or Gaussian elimination can generate a large number of fill-ins (i.e., non-zeros)
\checkmark Matrix becomes much less sparse and consumes much memory

■ Iterative methods (e.g., conjugate gradient) are much more efficient in these cases

Quadratic Programming

■ Reformulate linear equation as a quadratic programming problem

$$
\begin{gathered}
A X=B \\
\min _{X} f(X)=\frac{1}{2} X^{T} A X-B^{T} X+C \\
\text { Convex since } \mathrm{A} \text { is positive definite } \\
\nabla f(X)=A X-B=0 \\
X=A^{-1} B \\
\text { Optimal } \mathrm{X} \text { is the solution of } \mathrm{AX}=\mathrm{B}
\end{gathered}
$$

Quadratic Programming Example

$$
f(X)=\frac{1}{2} X^{T} A X-B^{T} X+C \quad A=\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right] \quad B=\left[\begin{array}{l}
-2 \\
-8
\end{array}\right] \quad C=0
$$

Quadratic Programming Example

■ Contour and gradient

Gradient Method

- Iteration scheme

$$
\begin{gathered}
\min _{X} f(X)=\frac{1}{2} X^{T} A X-B^{T} X+C \\
\nabla f(X)=A X-B \\
X^{(k+1)}=X^{(k)}-\mu^{(k)} \cdot \nabla f\left[X^{(k)}\right]=X^{(k)}+\mu^{(k)} \cdot \frac{\left[B-A X^{(k)}\right]}{\text { Residual } \mathrm{R}^{(k)}} \\
X^{(k+1)}=X^{(k)}+\mu^{(k)} R^{(k)}
\end{gathered}
$$

Gradient Method

■ Optimal step size

$$
\begin{gathered}
f(X)=\frac{1}{2} X^{T} A X-B^{T} X+C \quad R^{(k)}=B-A X^{(k)} \quad X^{(k+1)}=X^{(k)}+\mu^{(k)} R^{(k)} \\
\min _{\mu^{(k)}} \quad f\left[X^{(k+1)}\right]=\frac{1}{2} X^{(k+1) T} A X^{(k+1)}-B^{T} X^{(k+1)}+C \\
\frac{d}{d \mu^{(k)}} f\left[X^{(k+1)}\right]=\left[\frac{\partial f}{\partial X^{(k+1)}}\right]^{T} \cdot \frac{\partial X^{(k+1)}}{\partial \mu^{(k)}}=\left[A X^{(k+1)}-B\right]^{T} \cdot R^{(k)}=-R^{(k+1) T} R^{(k)}=0
\end{gathered}
$$

Residuals $\mathrm{R}^{(k)}$ and $\mathrm{R}^{(k+1)}$ are orthogonal

Quadratic Programming Example

$$
f(X)=\frac{1}{2} X^{T} A X-B^{T} X+C \quad A=\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right] \quad B=\left[\begin{array}{l}
-2 \\
-8
\end{array}\right] \quad C=0
$$

Gradient Method

■ Optimal step size

$$
\begin{gathered}
R^{(k)}=B-A X^{(k)} X^{(k+1)}=X^{(k)}+\mu^{(k)} R^{(k)} \quad R^{(k+1) T} R^{(k)}=0 \\
\left\{B-A X^{(k+1)}\right]^{T} \cdot R^{(k)}=0 \\
{\left[B-A \cdot\left[X^{(k)}+\mu^{(k)} R^{(k)}\right]\right\}^{T} \cdot R^{(k)}=0} \\
{\left[B-A X^{(k)}-\mu^{(k)} A R^{(k)}\right]^{T} \cdot R^{(k)}=0} \\
\left.R^{(k) T} R^{(k)}-\mu^{(k)} A R^{(k)}\right]^{T} \cdot R^{(k) T} A R^{(k)}=0 \\
\mu^{(k)}=\frac{R^{(k) T} R^{(k)}}{R^{(k) T} A R^{(k)}}
\end{gathered}
$$

Gradient Method

■ Iteration scheme

$$
\min _{X} f(X)=\frac{1}{2} X^{T} A X-B^{T} X+C
$$

$$
\begin{gathered}
R^{(k)}=B-A X^{(k)} \\
\mu^{(k)}=\frac{R^{(k) T} R^{(k)}}{R^{(k) T} A R^{(k)}} \\
X^{(k+1)}=X^{(k)}+\mu^{(k)} R^{(k)}
\end{gathered}
$$

Quadratic Programming Example

$$
f(X)=\frac{1}{2} X^{T} A X-B^{T} X+C \quad A=\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right] \quad B=\left[\begin{array}{l}
-2 \\
-8
\end{array}\right] \quad C=0
$$

Gradient method may converge by one iteration if a "good" initial guess is selected

Initial Guess

- Gradient method converges by one iteration, if $\mathrm{R}^{(0)}$ is an eigenvector of A

$$
\begin{gathered}
R^{(k)}=B-A X^{(k)} \mu^{(k)}=\frac{R^{(k) T} R^{(k)}}{R^{(k) T} A R^{(k)}} \quad X^{(k+1)}=X^{(k)}+\mu^{(k)} R^{(k)} \\
A R^{(0)}=\lambda R^{(0)} \\
\mu^{(0)}=\frac{R^{(0) T} R^{(0)}}{\lambda R^{(0) T} R^{(0)}}=\frac{1}{\lambda} \\
R^{(1)}=B-A X^{(1)}=B-A \cdot\left[X^{(0)}+\frac{1}{\lambda} R^{(0)}\right]=B-A X^{(0)}-\frac{1}{\lambda} A R^{(0)} \\
=R^{(0)}-\frac{1}{\lambda} \cdot \lambda R^{(0)}=0
\end{gathered}
$$

Initial Guess

■ In practice, it is not possible to achieve such an ideal case
\checkmark We do not know the exact eigenvectors of A

■ Starting from a random initial guess, gradient method may take many iterations to converge
v Gradient method has slow convergence, even though optimal step size μ is used for each iteration

- This is a big problem of gradient method

Quadratic Programming Example

$$
f(X)=\frac{1}{2} X^{T} A X-B^{T} X+C \quad A=\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right] \quad B=\left[\begin{array}{l}
-2 \\
-8
\end{array}\right] \quad C=0
$$

Newton Method

■ Newton method can converge by one iteration

- However, we have to solve the linear equation $X=A^{-1} B$
v It is exactly the problem that we try to solve at the beginning
v Newton method does not tell us how to solve the large, sparse linear equation efficiently

$$
\begin{gathered}
\min _{X} f(X)=\frac{1}{2} X^{T} A X-B^{T} X+C \\
\nabla f(X)=A X-B=0 \\
X=A^{-1} B
\end{gathered}
$$

Orthogonal Search Direction

■ Gradient method often moves towards the same direction as earlier iteration steps - BAD idea

Orthogonal Search Direction

■ Ideally, we want to
velect a set of orthogonal search directions $D^{(k)}$

- Take exactly one iteration step for each direction
v After at most N steps, we get the solution X
$\checkmark\left(N\right.$ is the problem size, i.e., $\left.A \in R^{N \times N}\right)$

How do we decide $\mu^{(k)}$ and $D^{(k)}$?

Orthogonal Search Direction

- Determine step size $\mu^{(k)}$

$$
\begin{gathered}
D^{(i) T} D^{(j)}=0 \quad X^{(k+1)}=X^{(k)}+\mu^{(k)} D^{(k)} \quad X=X^{(0)}+\mu^{(0)} D^{(0)}+\cdots+\mu^{(N-1)} D^{(N-1)} \\
X^{(k+1)}=X^{(0)}+\mu^{(0)} D^{(0)}+\cdots+\mu^{(k)} D^{(k)} \\
\Delta^{(k+1)}=X^{(k+1)}-X=-\mu^{(k+1)} D^{(k+1)}-\cdots-\mu^{(N-1)} D^{(N-1)} \\
D^{(k) T} \Delta^{(k+1)}=D^{(k) T} \cdot\left[-\mu^{(k+1)} D^{(k+1)}-\cdots-\mu^{(N-1)} D^{(N-1)}\right]=0
\end{gathered}
$$

$\Delta^{(k+1)}$ and $D^{(k)}$ are orthogonal

Orthogonal Search Direction

■ Determine step size $\mu^{(k)}$

$$
\begin{gathered}
X^{(k+1)}=X^{(k)}+\mu^{(k)} D^{(k)} \quad \Delta^{(k)}=X^{(k)}-X \quad D^{(k) T} \Delta^{(k+1)}=0 \\
\Delta^{(k+1)}=X^{(k+1)}-X=X^{(k)}+\mu^{(k)} D^{(k)}-X=\Delta^{(k)}+\mu^{(k)} D^{(k)} \\
D^{(k) T} \cdot\left[\Delta^{(k)}+\mu^{(k)} D^{(k)}\right]=0 \\
D^{(k) T} \Delta^{(k)}+\mu^{(k)} D^{(k) T} D^{(k)}=0 \\
\mu^{(k)}=-\frac{D^{(k) T} \Delta^{(k)}}{D^{(k) T} D^{(k)}}
\end{gathered}
$$

However, we do not know $\Delta^{(k)}$ - otherwise, we know $X=X^{(k)}-\Delta^{(k)}$

Orthogonal Search Direction

■ Orthogonal search direction is difficult to apply to many practical optimization problems

- Instead of using orthogonal directions, we can make search directions conjugate (or equivalently A-orthogonal)

■ More details in next lecture

Summary

■ Conjugate gradient method (Part 1)
v Quadratic programming
, Gradient method
v Orthogonal search direction

