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Overview 

 Conjugate Gradient Method (Part 1) 
 Quadratic programming 
 Gradient method 
 Orthogonal search direction 
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Linear Equation 

 Linear equation 
 
 

 A is symmetric and positive definite 
 Can be solved by Cholesky decomposition 

 
 However, Cholesky decomposition (or Gaussian elimination in 

general) is not efficient if A is large and sparse 

BAX =
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Linear Equation 

 A matrix is sparse if it contains a large number of zero elements 
 
 
 
 
 
 
 

 Sparse matrix can be saved with small memory requirements 
 We do not explicitly save zero elements 
 We only save non-zero values and their locations 





























××
×

××
×××

××
×

××



Slide 5   

Linear Equation 

 Cholesky decomposition or Gaussian elimination can generate a 
large number of fill-ins (i.e., non-zeros) 
 Matrix becomes much less sparse and consumes much memory 

 
 
 
 
 
 
 

 Iterative methods (e.g., conjugate gradient) are much more 
efficient in these cases 
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Quadratic Programming 

 Reformulate linear equation as a quadratic programming problem 

BAX =

( ) CXBAXXXf TT

X
+−=

2
1min

( ) 0=−=∇ BAXXf

BAX 1−=

Convex since A is positive definite 

Optimal X is the solution of AX = B 
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Quadratic Programming Example 
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Quadratic Programming Example 

 Contour and gradient 
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Gradient Method 

 Iteration scheme 

( ) CXBAXXXf TT

X
+−=

2
1min

( ) BAXXf −=∇

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]kkkkkkk AXBXXfXX −⋅+=∇⋅−=+ µµ1

( ) ( ) ( ) ( )kkkk RXX µ+=+1

Residual R(k) 
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Gradient Method 

 Optimal step size 

( ) ( ) ( ) ( )kkkk RXX µ+=+1( ) CXBAXXXf TT +−=
2
1

( )
( )[ ] ( ) ( ) ( ) CXBAXXXf kTkTkk

k
+−= ++++ 1111

2
1min

µ
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Residuals R(k) and R(k+1) are orthogonal 
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Quadratic Programming Example 
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Gradient Method 

 Optimal step size 
 ( ) ( ) ( ) ( )kkkk RXX µ+=+1( ) ( )kk AXBR −= ( ) ( ) 01 =+ kTk RR

( )[ ] ( ) 01 =⋅− + kTk RAXB

( ) ( ) ( )[ ]{ } ( ) 0=⋅+⋅− kTkkk RRXAB µ

( ) ( ) ( )[ ] ( ) 0=⋅−− kTkkk RARAXB µ

( ) ( ) ( )[ ] ( ) 0=⋅− kTkkk RARR µ

( ) ( ) ( ) ( ) ( ) 0=− kTkkkTk ARRRR µ

( )
( ) ( )

( ) ( )kTk

kTk
k

ARR
RR

=µ
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Gradient Method 

 Iteration scheme 
 

( ) ( ) ( ) ( )kkkk RXX µ+=+1

( ) ( )kk AXBR −=

( )
( ) ( )

( ) ( )kTk

kTk
k

ARR
RR

=µ

( ) CXBAXXXf TT

X
+−=

2
1min
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Quadratic Programming Example 
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Gradient method may converge by one iteration if a 
“good” initial guess is selected 
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Initial Guess 

 Gradient method converges by one iteration, if R(0) is an 
eigenvector of A  

( ) ( ) ( ) ( )kkkk RXX µ+=+1( ) ( )kk AXBR −= ( )
( ) ( )

( ) ( )kTk
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Initial Guess 

 In practice, it is not possible to achieve such an ideal case 
 We do not know the exact eigenvectors of A 

 
 Starting from a random initial guess, gradient method may 

take many iterations to converge 
 Gradient method has slow convergence, even though optimal 

step size µ is used for each iteration 
 This is a big problem of gradient method 
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Quadratic Programming Example 
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Newton Method 

 Newton method can converge by one iteration 
 

 However, we have to solve the linear equation X = A−1B 
 It is exactly the problem that we try to solve at the beginning 
 Newton method does not tell us how to solve the large, sparse 

linear equation efficiently 

( ) CXBAXXXf TT

X
+−=

2
1min

( ) 0=−=∇ BAXXf

BAX 1−=
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Orthogonal Search Direction 

 Gradient method often moves towards the same direction as 
earlier iteration steps – BAD idea 
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Orthogonal Search Direction 

 Ideally, we want to 
 Select a set of orthogonal search directions D(k) 

 Take exactly one iteration step for each direction 
 After at most N steps, we get the solution X 
 (N is the problem size, i.e., A ∈ RN×N) 

x1 

x2 ( ) ( ) ( ) ( )

( ) ( ) 0

1

=

+=+

jTi

kkkk

DD
DXX µ

X 

µ(1) D(1) 

µ(2) D(2) How do we decide µ(k) and D(k)? 
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Orthogonal Search Direction 

 Determine step size µ(k) 

( ) ( ) ( ) ( )kkkk DXX µ+=+1 ( ) ( ) ( ) ( ) ( )11000 −−+++= NN DDXX µµ 

( ) ( ) 0=jTi DD

( ) ( ) ( ) ( ) ( ) ( )111111 −−++++ −−−=−=∆ NNkkkk DDXX µµ 

( ) ( ) ( ) ( ) ( ) ( )kkk DDXX µµ +++=+


0001

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 011111 =−−−⋅=∆ −−+++ NNkkTkkTk DDDD µµ 

∆(k+1) and D(k) are orthogonal 
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Orthogonal Search Direction 

 Determine step size µ(k) 

 ( ) ( ) 01 =∆ +kTkD( ) ( ) ( ) ( )kkkk DXX µ+=+1 ( ) ( ) XX kk −=∆

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kkkkkkkk DXDXXX µµ +∆=−+=−=∆ ++ 11

( ) ( ) ( ) ( )[ ] 0=+∆⋅ kkkTk DD µ

( ) ( ) ( ) ( ) ( ) 0=+∆ kTkkkTk DDD µ

( )
( ) ( )

( ) ( )kTk

kTk
k

DD
D ∆

−=µ

However, we do not know ∆(k) – otherwise, we know X = X(k) − ∆(k) 
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Orthogonal Search Direction 

 Orthogonal search direction is difficult to apply to many 
practical optimization problems 
 

 Instead of using orthogonal directions, we can make search 
directions conjugate (or equivalently A-orthogonal) 
 

 More details in next lecture 
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Summary 

 Conjugate gradient method (Part 1) 
 Quadratic programming 
 Gradient method 
 Orthogonal search direction 
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