
Slide 1   

18-660: Numerical Methods for 
Engineering Design and Optimization 

Xin Li 
Department of ECE 

Carnegie Mellon University 
Pittsburgh, PA 15213 



Slide 2   

Overview 

 Duality 
 Lagrange dual 
 KKT condition 
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Constrained Nonlinear Optimization 

 Standard form for constrained nonlinear optimization 
 
 
 
 
 

 We do not write equality constraint h(X) = 0 as two inequality 
constraints h(X) ≥ 0 and h(X) ≤ 0 in this lecture 
 Equality and inequality constraints are handled differently in 

duality theory 
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Lagrangian 

 
 
 

 Define the Lagrangian 
 
 
 
 
 

 L(X,U,V) is a nonlinear function of X, but it is linearly dependent 
of U and V 
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Lagrange Dual Function 

 Define Lagrange dual function 
 
 
 

 At any given X, L(X,U,V) is a linear function of U and V 
 d(U,V) is the minimum of an infinite number of linear functions 
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Lagrange Dual Function 

 
 
 
 
 
 
 
 
 
 

 For any constrained nonlinear optimization, the Lagrange 
dual function d(U,V) is concave 
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Lower Bound Property 

 
 
 
 

 If X* is the optimal solution and U ≥ 0, then 
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Linear Programming Example 
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Lagrange Dual Problem 

 Lagrange dual problem is defined as 
 
 
 
 
 

 Linear programming example 
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Weak Duality 

 
 
 
 

 Weak duality 
 X* is primal optimum 
 U* and V* are dual optimum 
 f(X*) ≥ d(U*,V*) (Lagrange dual function is the lower bound) 

 
 Weak duality holds for any optimization problem (either convex 

or non-convex) 
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Strong Duality 

 
 
 
 

 Strong duality 
 X* is primal optimum 
 U* and V* are dual optimum 
 f(X*) = d(U*,V*) (duality gap is zero) 

 
 Strong duality does not hold in general, but it usually holds for 

convex problems 
 Conditions that guarantee strong duality in convex problems are 

referred to as constraint qualifications 
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Slater’s Constraint Qualification 

 Strong duality holds for convex optimization 
 
 
 
 
 
 if it is strictly feasible, i.e., 

 
 
 

 Sufficient but not necessary condition 
 Many other constraint qualifications exist 
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Quadratic Programming Example 

 
 
 
 
 

 Primal problem is not convex, if A is not positive semidefinite 
 

 Dual problem is convex semidefinite programming 
 

 Strong duality holds even if primal problem is not convex 
 Dual problem can be solved both efficiently and robustly due to 

convexity 
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Complementary Slackness 

 
 
 
 

 Assume that strong duality holds, X* is primal optimum, and 
U* and V* are dual optimum 
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Complementary Slackness 

 
 
 
 
 
 
 
 
 
 

 um* > 0 → gm(X*) = 0 (active constraint) 
 gm(X*) < 0 → um* = 0 (inactive constraint) 
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Karush-Kuhn-Tucker (KKT) Condition 

 
 
 
 

 If strong duality holds and X*, U* and V* are optimal, then 
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KKT Condition for Convex Problem 

 
 
 
 
 

 Given a convex problem with strong duality, X*, U* and V* are 
optimal if and only if they satisfy the KKT condition 
 

 Many convex programming algorithms are derived from KKT 
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Boyd and Vandenberghe, “Convex Optimization,” Cambridge University 
Press, 2004 
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Summary 

 Duality 
 Lagrange dual 
 KKT condition 
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