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Overview 

 Constrained Optimization 
 Inequality constraint 
 Interior point method 
 Feasibility problem 
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Inequality Constrained Optimization 

 
 
 
 

 Equality constraint can be written as two inequality constraints 
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Indicator Function 

 Define indicator function 
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Indicator Function 

 
 
 
 

 Result in a new optimization problem with linear constraints only 
 However, the indicator function I(•) is not smooth 
 We cannot directly apply Lagrange multiplier and calculate 

1st/2nd-order derivatives 

 
 New idea: approximate I(•) by a smooth function 
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Logarithmic Barrier 

 Approximate I(•) by logarithmic barrier 
 
 

 where t > 0 is a user-defined parameter 
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Logarithmic Barrier 

 
 
 
 
 
 
 
 

 Open question: does the new optimization preserve convexity? 

( ) ( )[ ]
BAX

XgIXf
M

m
mX

=

+∑
=

S.T.

min
1

( ) ( )[ ]
BAX

Xg
t

Xf
M

m
mX

=

−⋅− ∑
=

S.T.

log1min
1

( ) ( ) ( )0log1 ≤−⋅−≈ uutuI



Slide 8   

Logarithmic Barrier 

 
 
 
 

 If f(X) and gm(X) are convex 

( )
( ) ( )

BAX
MmXg

Xf

m

X

=
=≤ ,,2,10S.T.

min


( ) ( )[ ]
BAX

Xg
t

Xf
M

m
mX

=

−⋅− ∑
=

S.T.

log1min
1

( ) ( )[ ]Xg
t

X mm −⋅−= log1ϕ

( ) ( ) ( )[ ] ( ) ( )Xg
Xgt

Xg
Xgt

X m
m

m
m

m ∇⋅⋅−=∇−⋅
−
⋅−=∇

1111ϕ



Slide 9   

Logarithmic Barrier 

 
 
 
 

 If f(X) and gm(X) are convex 
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Logarithmic Barrier 

 
 
 
 

 If f(X) and gm(X) are convex 
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Interior Point Method 

 
 
 
 

 Interior point method is also referred to as barrier method 
 Step 1: select an initial value of t and an initial guess X(0) 

 Step 2: solve linear equality constrained nonlinear optimization 
to find the optimal solution X* 

 Step 3: X(0) = X* and t = βt (β is typically 10~20) 
 Repeat Step 2~3 until t is sufficiently large 
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Feasibility Problem 

 
 
 
 

 When we iteratively solve linear equality constrained nonlinear 
optimization, X(0) must be feasible 

 
 
 

 Otherwise, log{−gm[X(0)]} does not have a numerical value 
 We cannot move to the next iteration step 
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Feasibility Problem 

 
 
 
 

 How do we come up with an initial feasible solution? 
 
 
 

 How do we even know that the optimization is feasible? 
 Not all optimization problems have a feasible solution 
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Phase I Method 

 
 
 
 

 We must do another optimization to decide 
 Is the optimization feasible? 
 If yes, find one of the feasible solutions 

 
 This preprocessing step is called phase I, and the interior 

point method should be applied for phase II 
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Phase I Method 

 
 
 
 

 Once optimal point [X* s*] is found for phase I problem, we know: 
 If s* > 0 

 Phase II problem is not feasible 
 If s* ≤ 0 

 Phase II problem is feasible 
 X* is one of the feasible solutions 
 Starting from X*, apply interior point method to solve phase II problem 

( )
( ) ( )

BAX
MmXg

Xf

m

X

=
=≤ ,,2,10S.T.

min
 ( ) ( )

BAX
MmsXg

s

m

sX

=
=≤ ,,2,1S.T.

min
,



Phase I problem Phase II problem 



Slide 16   

Phase I Method 

 
 
 
 

 Phase I problem can be easily solved 
 Select an initial X(0) that satisfies AX(0) = B 

 Calculate gm[X(0)] where m = 1,2,...,M 
 Determine the maximum value of gm[X(0)], denoted as gMAX 

 Set s(0) = gMAX 
 Starting from [X(0); s(0)], apply interior point method to solve 

phase I problem and find its optimal solution [X*; s*] 
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Semidefinite Programming 

 Inequality constraints are not always represented as g(X) ≤ 0 
 

 Example: maximum inscribed ellipsoid 
 Generalized inequality can be solved by semidefinite programming 
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Semidefinite Programming 

 
 
 
 

 Define logarithmic barrier function 
 
 

 ϕ(X) is convex 
 log[det(•)] is concave 
 −log[det(•)] is convex 
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Semidefinite Programming 

 
 
 

 ϕ(X) approaches infinite, if g(X) becomes indefinite 
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Semidefinite Programming 

 
 
 
 

 Phase I method 
 Arbitrarily select an initial X(0) 

 Select a sufficiently large s(0) so that phase I constraint is feasible 
 Starting from [X(0); s(0)], apply interior point method to solve 

phase I problem and find its optimal solution [X*; s*] 
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Semidefinite Programming 

 A matrix F is diagonally dominant if 
 
 
 
 
 
 

 A matrix F is positive semidefinite, if 
 F is symmetric, and 
 F is diagonally dominant, and 
 All diagonal elements are non-negative 
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Semidefinite Programming 

 
 
 

 Select a sufficiently large value of s(0) so that the matrix g[X(0)] 
+ s(0)I is diagonally dominant (hence, positive semidefinite) 
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Summary 

 Constrained optimization 
 Inequality constraint 
 Interior point method 
 Feasibility problem 
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