CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

■ Constrained Optimization
v Linear equality constraint
, Lagrange multiplier

Constrained Nonlinear Optimization

$$
\begin{array}{ll}
\min _{X} & f(X) \\
\text { S.T. } & \left\{\begin{array}{c}
g_{1}(X) \leq 0 \\
g_{2}(X) \leq 0 \\
\vdots
\end{array}\right.
\end{array}
$$

■ Equality constraint can be written as two inequality constraints

$$
\begin{array}{ll}
\min _{x} & f(x) \\
\text { S.T. } & g(x)=0
\end{array} \quad \square \quad \begin{aligned}
& \min _{x} \\
& \text { S.T. }
\end{aligned} \begin{aligned}
& f(x) \\
& g(x) \leq 0 \\
& -g(x) \leq 0
\end{aligned}
$$

Linear Equality Constraint

$$
\begin{array}{ll}
\min _{X} & f(X) \\
\text { S.T. } & A X=B
\end{array}
$$

■ Linear equality constraint can be efficiently handled by a number of optimization algorithms
ve do not write $\mathrm{AX}=\mathrm{B}$ as two inequality constraints

- It can be directly solved with high efficiency

Subspace Reduction

■ Eliminate linear equality constraint
v $\mathrm{X}=\mathrm{FZ}+\mathrm{D}$ is the (non-unique) solution of under-determined linear equation $A X=B$

- For any Z value, $A X$ is equal to B

A Simple Example

$$
\begin{gathered}
A X=B \\
x_{1}+x_{2}=1 \\
x_{1}=z=F Z+D \\
x_{2}=-Z+1 \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \cdot z+\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
\end{gathered}
$$

Subspace Reduction

$$
\begin{aligned}
& \min _{X} \quad f(X) \\
& \text { S.T. } A X=B \quad \square \quad \min _{Z} f(F Z+D) \\
& X=F Z+D
\end{aligned}
$$

$■$ Solve the optimal value Z by unconstrained optimization minimizing f(FZ+D)

■ Calculate the optimum $X=F Z+D$

Lagrange Multiplier

■ Equality constraint can also be handled by Lagrange multiplier

- If X * is a local minimum of

$$
\begin{array}{ll}
\min _{X} & f(X) \\
\text { S.T. } & g_{i}(X)=0 \quad(i=1,2, \cdots, P)
\end{array}
$$

∇ there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$, called Lagrange multipliers, such that

$$
\nabla f\left(X^{*}\right)+\sum_{i=1}^{P} \lambda_{i} \cdot \nabla g_{i}\left(X^{*}\right)=0
$$

A Simple Example

Lagrange Multiplier

$$
\begin{array}{ll}
\min _{x} & f(X) \\
\text { S.T. } & g_{i}(X)=0 \quad(i=1,2, \cdots, P) \quad \measuredangle \quad \nabla f\left(X^{*}\right)+\sum_{i=1}^{p} \lambda_{i} \cdot \nabla g_{i}\left(X^{*}\right)=0
\end{array}
$$

- Optimality condition for linear constraints

$$
\nabla g_{i}(X)=A(i,:)^{T}
$$

$$
\begin{aligned}
& \min _{x} f(X) \\
& \text { S.T. } A X=B \\
& g_{i}(X)=A(i,:) \cdot X-B(i)=0 \quad\left[\begin{array}{c}
-------[-\overline{-}]-\rightarrow \text { i-th row } \\
A
\end{array}\right] \cdot X-[B=0
\end{aligned}
$$

Lagrange Multiplier

$$
\begin{array}{ll}
\min _{X} & f(X) \\
\text { S.T. } & g_{i}(X)=0 \quad(i=1,2, \cdots, P) \quad \triangleleft
\end{array} \quad \nabla f\left(X^{*}\right)+\sum_{i=1}^{p} \lambda_{i} \cdot \nabla g_{i}\left(X^{*}\right)=0
$$

- Optimality condition for linear constraints

$$
\begin{gathered}
\nabla g_{i}(X)=A(i,:)^{T} \\
\sum_{i=1}^{p} \lambda_{i} \cdot \nabla g_{i}(X)=\sum_{i=1}^{p} \lambda_{i} \cdot A(i,:)^{T}=A^{T} V \\
\nabla f\left(X^{*}\right)+A^{T} V=0
\end{gathered} \frac{\left[\begin{array}{lll}
A(1,:)^{T} & A(2,:)^{T} & \cdots \\
& & \\
A^{T} & {\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots
\end{array}\right]} \\
V
\end{array}\right]}{\left[\begin{array}{c}
\\
\end{array}\right]}
$$

Linear Equality Constrained Quadratic Programming

$$
\begin{array}{cl}
\min _{X} & f(X) \\
\text { S.T. } & A X=B
\end{array}
$$

$$
\nabla f\left(X^{*}\right)+A^{T} V=0
$$

■ We first consider quadratic cost function
v Any smooth nonlinear cost function can be locally approximated as a quadratic function (2nd-order Taylor expansion)

$$
\begin{array}{ll}
\min _{X} & f(X)=\frac{1}{2} X^{T} Q X+R^{T} X+C \\
\text { S.T. } & A X=B \\
& \nabla f(X)=Q X+R \\
& Q X^{*}+R+A^{T} V=0
\end{array}
$$

Linear Equality Constrained Quadratic Programming

$$
\begin{array}{ll}
\min _{X} & \frac{1}{2} X^{T} Q X+R^{T} X+C \\
\text { S.T. } & A X=B
\end{array}
$$

■ Optimality condition for quadratic programming

$$
\begin{gathered}
Q X^{*}+R+A^{T} V=0 \\
A X^{*}=B \\
{\left[\begin{array}{cc}
Q & A^{T} \\
A & 0
\end{array}\right] \cdot\left[\begin{array}{c}
X^{*} \\
V
\end{array}\right]=\left[\begin{array}{c}
-R \\
B
\end{array}\right]}
\end{gathered}
$$

Solve linear equation to determine X^{*} (optimal solution) and V (Lagrange multipliers)

Linear Equality Constrained Nonlinear Programming

$$
\begin{array}{lll}
\min _{X} & \frac{1}{2} X^{T} Q X+R^{T} X+C & \square \\
\text { S.T. } & A X=B &
\end{array}\left[\begin{array}{cc}
Q & A^{T} \\
A & 0
\end{array}\right] \cdot\left[\begin{array}{c}
X^{*} \\
V
\end{array}\right]=\left[\begin{array}{c}
-R \\
B
\end{array}\right]
$$

- Minimize nonlinear function $f(X)$ given linear constraint $A X=B$

$$
\begin{gathered}
\min _{X} \quad f(X) \\
\text { S.T. } \quad A X=B \\
f\left[X^{(k+1)}\right] \approx \frac{1}{2} \cdot \Delta X^{T} \cdot \nabla^{2} f\left[X^{(k)}\right] \cdot \Delta X+\nabla f\left[X^{(k)}\right]^{T} \cdot \Delta X+f\left[X^{(k)}\right] \\
A \cdot \Delta X=A \cdot\left[X^{(k+1)}-X^{(k)}\right]=A \cdot X^{(k+1)}-A X^{(k)}=B-A X^{(k)}
\end{gathered}
$$

Linear Equality Constrained Nonlinear Programming

$$
\begin{gathered}
\min _{X} \begin{array}{l}
\frac{1}{2} X^{T} Q X+R^{T} X+C \\
\text { S.T. } A X=B
\end{array} \quad\left[\begin{array}{cc}
Q & A^{T} \\
A & 0
\end{array}\right] \cdot\left[\begin{array}{c}
X^{*} \\
V
\end{array}\right]=\left[\begin{array}{c}
-R \\
B
\end{array}\right] \\
f\left[X^{(k+1)}\right] \approx \frac{1}{2} \cdot \Delta X^{T} \cdot \nabla^{2} f\left[X^{(k)}\right] \cdot \Delta X+\nabla f\left[X^{(k)}\right]^{T} \cdot \Delta X+f\left[X^{(k)}\right] \\
A \cdot \Delta X=B-A X^{(k)} \\
{\left[\begin{array}{cc}
\nabla^{2} f\left[X^{(k)}\right] & A^{T} \\
A & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta X \\
V
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left[X^{(k)}\right] \\
B-A X^{(k)}
\end{array}\right]}
\end{gathered}
$$

Solve linear equation to determine ΔX

$$
\begin{gathered}
X^{(k+1)}=X^{(k)}+\Delta X \\
\text { Update } X^{(k+1)}
\end{gathered}
$$

Linear Equality Constrained Nonlinear Programming

$$
\begin{array}{cl}
\min _{X} & f(X) \\
\text { S.T. } & A X=B
\end{array} \quad \measuredangle \quad\left[\begin{array}{cc}
\nabla^{2} f\left[X^{(k)}\right] & A^{T} \\
A & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta X \\
V
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left[X^{(k)}\right] \\
B-A X^{(k)}
\end{array}\right]
$$

- If $X^{(k)}$ is a feasible solution

Ve can start from an initial solution $X^{(0)}$ that is feasible

- Even if $X^{(0)}$ is not feasible, $X^{(1)}$ is feasible after one iteration

$$
\begin{gathered}
A X^{(k)}=B \\
B-A X^{(k)}=0 \\
{\left[\begin{array}{cc}
\nabla^{2} f\left[X^{(k)}\right] & A^{T} \\
A & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta X \\
V
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left[X^{(k)}\right. \\
0
\end{array}\right]}
\end{gathered}
$$

A Simple Example

$\min _{x_{1}, x_{2}} x_{1}^{4}+x_{2}^{4}$
S.T. $\quad x_{1}+x_{2}=1$

$$
X^{(0)}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(Feasible solution)

$$
\begin{array}{ll}
\min _{X} & f(X) \\
\text { S.T. } & A X=B
\end{array}
$$

$$
\begin{gathered}
f(X)=x_{1}^{4}+x_{2}^{4} \\
A=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
\end{gathered}
$$

$$
B=1
$$

$$
\begin{gathered}
\nabla^{2} f(X)=\left[\begin{array}{cc}
12 x_{1}^{2} & 0 \\
0 & 12 x_{2}^{2}
\end{array}\right] \\
\nabla f(X)=\left[\begin{array}{c}
4 x_{1}^{3} \\
4 x_{2}^{3}
\end{array}\right]
\end{gathered}
$$

A Simple Example

$$
\begin{array}{cc}
\min _{x_{1}, x_{2}} \begin{array}{l}
x_{1}^{4}+x_{2}^{4} \\
\text { S.T. }
\end{array} x_{1}+x_{2}=1 & {\left[\begin{array}{cc}
\nabla^{2} f\left[X^{(k)}\right] \\
A & A^{T} \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta X \\
V
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left[X^{(k)}\right] \\
0
\end{array}\right]} \\
X^{(0)}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] & \nabla^{2} f\left[X^{(0)}\right]=\left[\begin{array}{cc}
12 & 0 \\
0 & 0
\end{array}\right] \quad \nabla f\left[X^{(0)}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right] \\
A=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
\nabla^{2} f(X)=\left[\begin{array}{cc}
12 x_{1}^{2} & 0 \\
0 & 12 x_{2}^{2}
\end{array}\right] & {\left[\begin{array}{ccc}
12 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta X \\
V
\end{array}\right]=\left[\begin{array}{c}
-4 \\
0 \\
0
\end{array}\right]} \\
\nabla f(X)=\left[\begin{array}{c}
4 x_{1}^{3} \\
4 x_{2}^{3}
\end{array}\right]
\end{array}
$$

A Simple Example

$$
\begin{array}{cc}
\begin{array}{cc}
\min _{x_{1}, x_{2}} x_{1}^{4}+x_{2}^{4} \\
\text { S.T. } & x_{1}+x_{2}=1
\end{array} & {\left[\begin{array}{cc}
\nabla^{2} f\left[X^{(k)}\right] & A^{T} \\
A & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta X \\
V
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left[X^{(k)}\right] \\
0
\end{array}\right]} \\
X^{(1)}=\left[\begin{array}{l}
0.67 \\
0.33
\end{array}\right] & \nabla^{2} f\left[X^{(1)}\right]=\left[\begin{array}{cc}
5.39 & 0 \\
0 & 1.31
\end{array}\right] \nabla f\left[X^{(1)}\right]=\left[\begin{array}{l}
1.20 \\
0.14
\end{array}\right] \\
A=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
\nabla^{2} f(X)=\left[\begin{array}{cc}
12 x_{1}^{2} & 0 \\
0 & 12 x_{2}^{2}
\end{array}\right] & {\left[\begin{array}{ccc}
5.39 & 0 & 1 \\
0 & 1.31 & 1 \\
1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta X \\
V
\end{array}\right]=\left[\begin{array}{c}
-1.20 \\
-0.14 \\
0
\end{array}\right]} \\
\nabla f(X)=\left[\begin{array}{c}
4 x_{1}^{3} \\
4 x_{2}^{3}
\end{array}\right] & \Delta X=\left[\begin{array}{c}
-0.16 \\
0.16
\end{array}\right] \quad X^{(2)}=\left[\begin{array}{c}
0.51 \\
0.49
\end{array}\right]
\end{array}
$$

Linear Equality Constrained Nonlinear Programming

■ Linear equality constraints can be efficiently handled by subspace reduction or Lagrange multiplier

- Nonlinear equality constraints and inequality constraints must be handled by a different algorithm
v Interior point method (also referred to as barrier method)
- More details in future lectures

Summary

■ Constrained optimization
v Linear equality constraint

- Lagrange multiplier

