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Overview 

 Constrained Optimization 
 Linear equality constraint 
 Lagrange multiplier 
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Constrained Nonlinear Optimization 

 
 
 
 
 

 Equality constraint can be written as two inequality constraints 
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Linear Equality Constraint 

 
 
 

 Linear equality constraint can be efficiently handled by a 
number of optimization algorithms 
 We do not write AX = B as two inequality constraints 
 It can be directly solved with high efficiency 
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Subspace Reduction 

 Eliminate linear equality constraint 
 
 
 
 
 

 X = FZ+D is the (non-unique) solution of under-determined 
linear equation AX = B 

 For any Z value, AX is equal to B 
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A Simple Example 
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Subspace Reduction 

 
 
 
 
 

 Solve the optimal value Z by unconstrained optimization – 
minimizing f(FZ+D) 
 

 Calculate the optimum X = FZ+D 
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Lagrange Multiplier 

 Equality constraint can also be handled by Lagrange multiplier 
 

 If X* is a local minimum of 
 
 
 

 there exist λ1, λ2, ..., λP, called Lagrange multipliers, such that 
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A Simple Example 
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Lagrange Multiplier 

 
 
 

 Optimality condition for linear constraints 

( )
( ) ( )PiXg
Xf

i

X
,,2,10S.T.

min
==

( ) ( ) 0
1

** =∇⋅+∇ ∑
=

P

i
ii XgXf λ

( )
BAX

Xf
X

=S.T.
min

( ) ( ) ( ) 0:, =−⋅= iBXiAXgi

( ) ( )Ti iAXg :,=∇

0=















−⋅
















BXA

i-th row 



Slide 11   

Lagrange Multiplier 

 
 
 

 Optimality condition for linear constraints 
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Linear Equality Constrained Quadratic Programming 

 
 
 

 We first consider quadratic cost function 
 Any smooth nonlinear cost function can be locally approximated 

as a quadratic function (2nd-order Taylor expansion) 
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Linear Equality Constrained Quadratic Programming 

 
 
 

 Optimality condition for quadratic programming 
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solution) and V (Lagrange multipliers) 
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Linear Equality Constrained Nonlinear Programming 

 
 
 

 Minimize nonlinear function f(X) given linear constraint AX = B 
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Linear Equality Constrained Nonlinear Programming 
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Linear Equality Constrained Nonlinear Programming 

 
 
 

 If X(k) is a feasible solution 
 We can start from an initial solution X(0) that is feasible 
 Even if X(0) is not feasible, X(1) is feasible after one iteration 
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A Simple Example 
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A Simple Example 
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A Simple Example 
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Linear Equality Constrained Nonlinear Programming 

 Linear equality constraints can be efficiently handled by 
subspace reduction or Lagrange multiplier 
 

 Nonlinear equality constraints and inequality constraints 
must be handled by a different algorithm 
 Interior point method (also referred to as barrier method) 
 More details in future lectures 
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Summary 

 Constrained optimization 
 Linear equality constraint 
 Lagrange multiplier 
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