18-660: Numerical Methods for Engineering Design and Optimization

Xin Li
Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

- Unconstrained Optimization
 - Gradient method
 - Newton method

Unconstrained Optimization

Linear regression with regularization

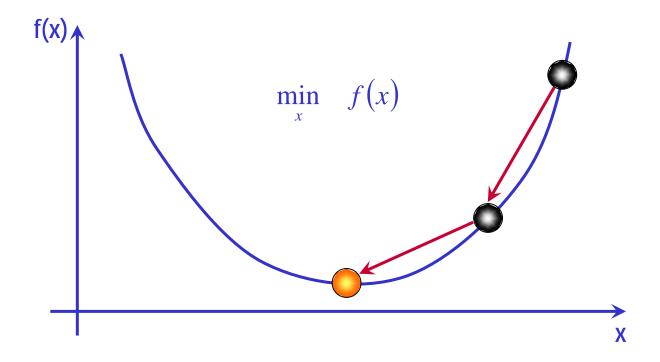
$$A\alpha = B \qquad \qquad \prod_{\alpha} \|A\alpha - B\|_{2}^{2} + \lambda \cdot \|\alpha\|_{1}$$

- Unconstrained optimization: minimizing a cost function without any constraint
 - Golden section search
 - Downhill simplex method
 - Gradient method
 - Newton method

➤ Non-derivative method

→ Rely on derivatives (this lecture)

If a cost function is smooth, its derivative information can be used to search optimal solution



■ For illustration purpose, we start from a one-dimensional case

$$\min_{x} f(x)$$

$$\Delta x^{(k)} = x^{(k+1)} - x^{(k)} = -\lambda^{(k)} \cdot \frac{df}{dx}\Big|_{x^{(k)}} \qquad (\lambda^{(k)} > 0)$$
Step size Derivative
$$x^{(k+1)} = x^{(k)} - \lambda^{(k)} \cdot \frac{df}{dx}\Big|_{x^{(k)}} \qquad (\lambda^{(k)} > 0)$$

One-dimensional case (continued)

$$\Delta x^{(k)} = x^{(k+1)} - x^{(k)} = -\lambda^{(k)} \cdot \frac{df}{dx} \Big|_{x^{(k)}} & & f\left[x^{(k+1)}\right] \approx f\left[x^{(k)}\right] + \frac{df}{dx} \Big|_{x^{(k)}} \cdot \Delta x^{(k)}$$

$$f\left[x^{(k+1)}\right] \approx f\left[x^{(k)}\right] + \frac{df}{dx} \Big|_{x^{(k)}} \cdot \left[-\lambda^{(k)} \cdot \frac{df}{dx} \Big|_{x^{(k)}}\right]$$

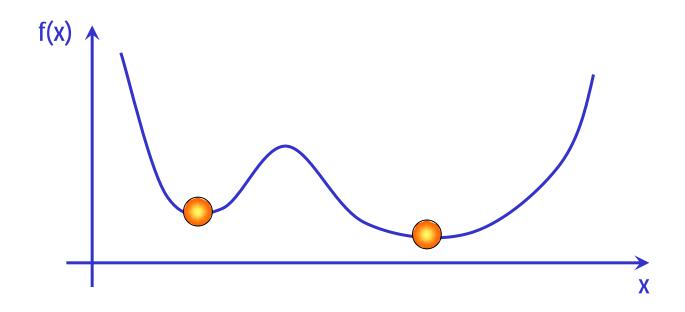
$$f\left[x^{(k+1)}\right] \approx f\left[x^{(k)}\right] - \lambda^{(k)} \cdot \frac{df}{dx} \Big|_{x^{(k)}} \qquad \lambda^{(k)} > 0$$

The cost function f(x) keeps decreasing if the derivative is non-zero

One-dimensional case (continued)

$$\Delta x = -\lambda \cdot df / dx = 0$$

Derivative is zero at local optimum (gradient method converges)



Two-dimensional case

$$\min_{x_{1}, x_{2}} f(x_{1}, x_{2})$$

$$\nabla f(x_{1}, x_{2}) = \begin{bmatrix} \partial f / \partial x_{1} \\ \partial f / \partial x_{2} \end{bmatrix}$$

$$\begin{bmatrix} \Delta x_{1}^{(k)} \\ \Delta x_{2}^{(k)} \end{bmatrix} = \begin{bmatrix} x_{1}^{(k+1)} - x_{1}^{(k)} \\ x_{2}^{(k+1)} - x_{2}^{(k)} \end{bmatrix} = -\lambda^{(k)} \cdot \nabla f \left[x_{1}^{(k)}, x_{2}^{(k)} \right]$$

$$\begin{bmatrix} x_{1}^{(k+1)} \\ x_{2}^{(k+1)} \end{bmatrix} = \begin{bmatrix} x_{1}^{(k)} \\ x_{2}^{(k)} \end{bmatrix} - \lambda^{(k)} \cdot \nabla f \left[x_{1}^{(k)}, x_{2}^{(k)} \right]$$

Two-dimensional case (continued)

$$\begin{split} \begin{bmatrix} \Delta x_{1}^{(k)} \\ \Delta x_{2}^{(k)} \end{bmatrix} &= -\lambda^{(k)} \cdot \nabla f \left[x_{1}^{(k)}, x_{2}^{(k)} \right] \\ f \left[x_{1}^{(k+1)}, x_{2}^{(k+1)} \right] &\approx f \left[x_{1}^{(k)}, x_{2}^{(k)} \right] + \nabla f \left[x_{1}^{(k)}, x_{2}^{(k)} \right]^{T} \cdot \begin{bmatrix} \Delta x_{1}^{(k)} \\ \Delta x_{2}^{(k)} \end{bmatrix} \\ f \left[x_{1}^{(k+1)}, x_{2}^{(k+1)} \right] &\approx f \left[x_{1}^{(k)}, x_{2}^{(k)} \right] - \lambda^{(k)} \cdot \nabla f \left[x_{1}^{(k)}, x_{2}^{(k)} \right]^{T} \cdot \nabla f \left[x_{1}^{(k)}, x_{2}^{(k)} \right] \\ f \left[x_{1}^{(k+1)}, x_{2}^{(k+1)} \right] &\approx f \left[x_{1}^{(k)}, x_{2}^{(k)} \right] - \lambda^{(k)} \cdot \left\| \nabla f \left[x_{1}^{(k)}, x_{2}^{(k)} \right] \right\|_{2}^{2} & \lambda^{(k)} > 0 \end{split}$$

The cost function $f(x_1, x_2)$ keeps decreasing if the gradient is non-zero

N-dimensional case

$$\min_{X} f(X)$$

$$\nabla f(X) = \begin{bmatrix} \partial f / \partial x_{1} \\ \partial f / \partial x_{2} \\ \vdots \end{bmatrix}$$

$$X^{(k+1)} = X^{(k)} - \lambda^{(k)} \cdot \nabla f[X^{(k)}]$$

- Gradient method relies on first-order derivative information
 - Each iteration is simple, but it converges to optimum slowly
 - I.e., require a large number of iteration steps
- The step size $\lambda^{(k)}$ can be optimized by one-dimensional search for fast convergence

$$\min_{\lambda^{(k)}} f\left\{X^{(k)} - \lambda^{(k)} \cdot \nabla f\left[X^{(k)}\right]\right\}$$

- Alternative algorithm: Newton method
 - Rely on both first-order and second-order derivatives
 - Each iteration is more expensive
 - But it converges to optimum more quickly, i.e., requires a smaller number of iterations to reach convergence

One-dimensional case

$$\min_{x} f(x)$$

$$\frac{df}{dx}\Big|_{x^{(k+1)}} \approx \frac{df}{dx}\Big|_{x^{(k)}} + \frac{d^2f}{dx^2}\Big|_{x^{(k)}} \cdot \left[x^{(k+1)} - x^{(k)}\right]$$

First-order derivative is zero at local optimum

$$0 = \frac{df}{dx}\bigg|_{x^{(k)}} + \frac{d^2f}{dx^2}\bigg|_{x^{(k)}} \cdot \left[x^{(k+1)} - x^{(k)}\right]$$

One-dimensional case (continued)

$$\left. \frac{df}{dx} \right|_{x^{(k)}} + \frac{d^2 f}{dx^2} \right|_{x^{(k)}} \cdot \left[x^{(k+1)} - x^{(k)} \right] = 0$$

$$\Delta x^{(k)} = x^{(k+1)} - x^{(k)} = -\frac{d^2 f}{dx^2} \bigg|_{x^{(k)}}^{-1} \cdot \frac{df}{dx} \bigg|_{x^{(k)}}$$

$$x^{(k+1)} = x^{(k)} - \frac{d^2 f}{dx^2} \Big|_{x^{(k)}}^{-1} \cdot \frac{df}{dx} \Big|_{x^{(k)}}$$

One-dimensional case (continued)

$$\Delta x^{(k)} = -\frac{d^{2} f}{dx^{2}} \Big|_{x^{(k)}}^{-1} \cdot \frac{df}{dx} \Big|_{x^{(k)}} \quad \& \quad f \Big[x^{(k+1)} \Big] \approx f \Big[x^{(k)} \Big] + \frac{df}{dx} \Big|_{x^{(k)}} \cdot \Delta x^{(k)}$$

$$f \Big[x^{(k+1)} \Big] \approx f \Big[x^{(k)} \Big] + \frac{df}{dx} \Big|_{x^{(k)}} \cdot \left[-\frac{d^{2} f}{dx^{2}} \Big|_{x^{(k)}}^{-1} \cdot \frac{df}{dx} \Big|_{x^{(k)}} \right]$$

$$f \Big[x^{(k+1)} \Big] \approx f \Big[x^{(k)} \Big] - \frac{d^{2} f}{dx^{2}} \Big|_{x^{(k)}}^{-1} \cdot \frac{df}{dx} \Big|_{x^{(k)}}^{2}$$

Positive (convex function)

One-dimensional case (continued)

$$x^{(k+1)} = x^{(k)} - \lambda^{(k)} \cdot \frac{df}{dx} \bigg|_{x^{(k)}}$$

Gradient method

 $x^{(k+1)} = x^{(k)} - \frac{d^2 f}{dx^2} \bigg|_{x^{(k)}}^{-1} \cdot \frac{df}{dx} \bigg|_{x^{(k)}}$

Newton method

Newton method gives an estimation of the optimal step size $\lambda^{(k)}$ using second-order derivative

$$\lambda^{(k)} = \frac{d^2 f}{dx^2} \bigg|_{x^{(k)}}^{-1} > 0 \quad \text{(convex function)}$$

- One-dimensional case (continued)
 - The step size estimation is based on the following linear approximation for first-order derivative

$$\frac{df}{dx}\Big|_{x^{(k+1)}} \approx \frac{df}{dx}\Big|_{x^{(k)}} + \frac{d^2f}{dx^2}\Big|_{x^{(k)}} \cdot \left[x^{(k+1)} - x^{(k)}\right]$$

■ The approximation is exact if and only if f(x) is quadratic and, therefore, df/dx is linear

$$f(x) = ax^2 + bx + c \implies \frac{df}{dx} = 2ax + b$$

- One-dimensional case (continued)
 - If the actual f(x) is not quadratic, the following step size estimation may be non-optimal

$$\lambda^{(k)} = \frac{d^2 f}{dx^2} \bigg|_{x^{(k)}}^{-1}$$

- Using this step size may result in bad convergence
- In these cases, a damping factor β is typically introduced

$$x^{(k+1)} = x^{(k)} - \beta \cdot \frac{d^2 f}{dx^2} \Big|_{x^{(k)}}^{-1} \cdot \frac{df}{dx} \Big|_{x^{(k)}} \quad (0 < \beta < 1)$$

Two-dimensional case

$$\min_{x_1,x_2} \quad f(x_1,x_2)$$

$$\nabla f(x_1, x_2) = \begin{bmatrix} \partial f / \partial x_1 \\ \partial f / \partial x_2 \end{bmatrix} \quad \& \quad \nabla^2 f(x_1, x_2) = \begin{bmatrix} \partial^2 f / \partial x_1^2 & \partial^2 f / \partial x_1 \partial x_2 \\ \partial^2 f / \partial x_1 \partial x_2 & \partial^2 f / \partial x_2^2 \end{bmatrix}$$

Hessian matrix

$$\nabla f \left[x_1^{(k+1)}, x_2^{(k+1)} \right] \approx \nabla f \left[x_1^{(k)}, x_2^{(k)} \right] + \nabla^2 f \left[x_1^{(k)}, x_2^{(k)} \right] \cdot \begin{bmatrix} x_1^{(k+1)} - x_1^{(k)} \\ x_2^{(k+1)} - x_2^{(k)} \end{bmatrix}$$

Two-dimensional case (continued)

$$\nabla f\left[x_1^{(k+1)}, x_2^{(k+1)}\right] \approx \nabla f\left[x_1^{(k)}, x_2^{(k)}\right] + \nabla^2 f\left[x_1^{(k)}, x_2^{(k)}\right] \cdot \begin{bmatrix} x_1^{(k+1)} - x_1^{(k)} \\ x_2^{(k+1)} - x_2^{(k)} \end{bmatrix} = 0$$

$$\begin{bmatrix} \Delta x_1^{(k+1)} \\ \Delta x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} x_1^{(k+1)} - x_1^{(k)} \\ x_2^{(k+1)} - x_2^{(k)} \end{bmatrix} = -\nabla^2 f \left[x_1^{(k)}, x_2^{(k)} \right]^{-1} \cdot \nabla f \left[x_1^{(k)}, x_2^{(k)} \right]$$

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} - \nabla^2 f \left[x_1^{(k)}, x_2^{(k)} \right]^{-1} \cdot \nabla f \left[x_1^{(k)}, x_2^{(k)} \right]$$

Two-dimensional case (continued)

$$\begin{bmatrix} \Delta x_1^{(k)} \\ \Delta x_2^{(k)} \end{bmatrix} = -\nabla^2 f \left[x_1^{(k)}, x_2^{(k)} \right]^{-1} \cdot \nabla f \left[x_1^{(k)}, x_2^{(k)} \right]$$

$$f\left[x_{1}^{(k+1)}, x_{2}^{(k+1)}\right] \approx f\left[x_{1}^{(k)}, x_{2}^{(k)}\right] + \nabla f\left[x_{1}^{(k)}, x_{2}^{(k)}\right]^{T} \cdot \begin{bmatrix} \Delta x_{1}^{(k)} \\ \Delta x_{2}^{(k)} \end{bmatrix}$$

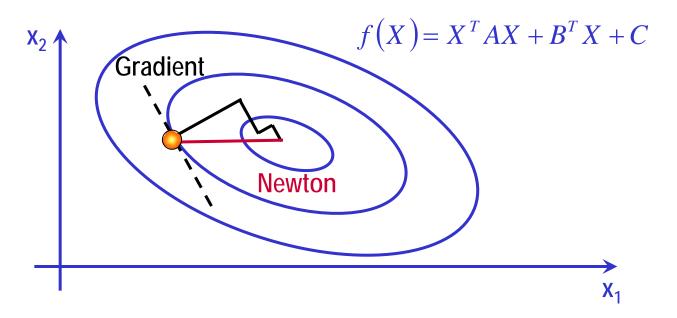
$$f\left[x_{1}^{(k+1)},x_{2}^{(k+1)}\right] \approx f\left[x_{1}^{(k)},x_{2}^{(k)}\right] - \nabla f\left[x_{1}^{(k)},x_{2}^{(k)}\right]^{T} \cdot \nabla^{2} f\left[x_{1}^{(k)},x_{2}^{(k)}\right]^{-1} \cdot \nabla f\left[x_{1}^{(k)},x_{2}^{(k)}\right]$$

Positive definite (convex function)

Two-dimensional case (continued)

$$\Delta X^{(k)} = -\lambda^{(k)} \cdot \nabla f \left[x_1^{(k)}, x_2^{(k)} \right] \qquad \Delta X^{(k)} = -\nabla^2 f \left[x_1^{(k)}, x_2^{(k)} \right]^{-1} \cdot \nabla f \left[x_1^{(k)}, x_2^{(k)} \right]$$
Gradient method
Newton method

■ Gradient method and Newton method do not move along the same direction



- Newton method can be extended to high-dimensional cases
- The following Hessian matrix is N×N if we have N variables

$$\nabla^{2} f(X) = \begin{bmatrix} \partial^{2} f / \partial x_{1}^{2} & \partial^{2} f / \partial x_{1} \partial x_{2} & \cdots & \partial^{2} f / \partial x_{1} \partial x_{N} \\ \partial^{2} f / \partial x_{1} \partial x_{2} & \partial^{2} f / \partial x_{2}^{2} & \cdots & \partial^{2} f / \partial x_{2} \partial x_{N} \\ \vdots & \vdots & \vdots & \vdots \\ \partial^{2} f / \partial x_{1} \partial x_{N} & \partial^{2} f / \partial x_{2} \partial x_{N} & \cdots & \partial^{2} f / \partial x_{N}^{2} \end{bmatrix}$$

Numerically computing the Hessian matrix and its inverse (by Cholesky decomposition) can be quite expensive for large N

$$X^{(k+1)} = X^{(k)} - \nabla^2 f \left[X^{(k)} \right]^{-1} \cdot \nabla f \left[X^{(k)} \right]$$

- A number of modified algorithms were developed to address this complexity issue
 - ▼ E.g., quasi-Newton method
- The key idea is to approximate the Hessian matrix and its inverse so that:
 - The computational cost is significantly reduced
 - ▼ Fast convergence can still be achieved
- More details can be found at

Numerical Recipes: The Art of Scientific Computing, 2007

Summary

- Unconstrained Optimization
 - Gradient method
 - Newton method