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m Unconstrained Optimization
< Gradient method
< Newton method

Slide 2



Unconstrained Optimization

m Linear regression with regularization

Ae=8  [)  min |aa-B[+ 1]

m Unconstrained optimization: minimizing a cost function
without any constraint
“ Golden section search L
. }—> Non-derivative method
~ Downhill simplex method
N Gradient method
< Newton method

> Rely on derivatives (this lecture)
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Gradient Method

m If a cost function is smooth, its derivative information can be
used to search optimal solution

f(X) A

< Y
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Gradient Method

m For illustration purpose, we start from a one-dimensional case

min f(x)

1l

df
dx

_V

Step size Derivative

Ax ) = (k1) g (k) _ (k) (ﬂ(k) > O)
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Gradient Method

m One-dimensional case (continued)

Ax(®) — k1) () _ 400 O df

dx f[x "*1]~ f[x

Is!
N

df
Al >0

(] ] Xm'{‘””‘ifx

1L

x|~ f[x]- A%

df
dx

()

The cost function f(x) keeps decreasing if the
derivative is non-zero

dX()
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Gradient Method

m One-dimensional case (continued)

AX = — 1 - df /dx _0 Derivative Is zero at local optimum (gradient
method converges)

f(x) A

< Y
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Gradient Method

m Two-dimensional case
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Gradient Method

m Two-dimensional case (continued)

{M ? 9 0]

Axg)
ot et 2]
2
4L
f [xl(k”), xgk“)]z f [xl(k), xgk)]—i(") Vi [xl("), xgk)]T Vi [xl("), xgk)]
4L

f[xl(k”),xgk”)]z f xl("),xgk)]—l(k)-HVf [xl(k),xgk)]‘z AK >0

The cost function f(x,, X,) keeps decreasing if
the gradient is non-zero
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Gradient Method

m N-dimensional case

min f(X)

1l

of /ox, |
Vi(X)=|af /ox,

1l

X (k+1) — y (k) _ q(k) g [X (k)]
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Newton Method

m Gradient method relies on first-order derivative information
N Each iteration is simple, but it converges to optimum slowly
 l.e., require a large number of iteration steps

m The step size A¥ can be optimized by one-dimensional search
for fast convergence
min £ {x -2 vf[x ©
l(k)

m Alternative algorithm: Newton method
< Rely on both first-order and second-order derivatives
N Each iteration is more expensive

N But it converges to optimum more quickly, i.e., requires a
smaller number of iterations to reach convergence
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Newton Method

m One-dimensional case

min  f(x)
2
CLE LA B L I GG
dX| e X[ dX7 | g
First-order derivative is
zero at local optimum
2
S I -[x("”)—x(k)]
dX X(k) dX X(k)
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Newton Method

m One-dimensional case (continued)

df d*f
— +
dx () CIX2

, [X(k+1) _ X(k)] -0

()

2
A = gty _d T df
dX (k) dX X(k)
5 ¢ |1
(o) _ 0 a7t df
dX2 (k) dX X(k)
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Newton Method

m One-dimensional case (continued)

A [

df
dx?

. — . Ax(k)
(o dX

()

X(J

Ax™®) =

«)] . ¢l 00], df
. & f[x 1]~f[x +dx

L
d2 | df
00 { dx?| ) dx
L

] o2

-1

at
(0 X

2

()

Positive (convex function)
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Newton Method

m One-dimensional case (continued)

-1

(o1 ) 00 df o)y dofp df
dx w (k) dX2 () dx (k)
Gradient method Newton method

~ Newton method gives an estimation of the optimal step size
L&) using second-order derivative

-1

k)

>0 (convex function)

2
ax* |
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Newton Method

m One-dimensional case (continued)

N The step size estimation is based on the following linear
approximation for first-order derivative

df

df _df
dx

(k1) dx

d’f
_|_

" [t _x®]
()

()

N The approximation is exact if and only if f(x) is quadratic and,
therefore, df/dx is linear

f(x)=ax’+bx+c = 9 oax+b
dx
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Newton Method

m One-dimensional case (continued)

~ If the actual f(x) is not quadratic, the following step size
estimation may be non-optimal

d2f
dx?

-1

(k)

()

W Using this step size may result in bad convergence

N In these cases, a damping factor 3 is typically introduced

-1

dr
(0 dX

d’f

(k+1) (k) 3
X X *
dX2

(0<p<1)

()
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Newton Method

m Two-dimensional case

min  f(x,X,)

X1, X3

of /ox o f /ox> 0% f /ox.0x
Vf(xl’XZ):{af;axl} & VZf(Xl’XZ):{ﬁzf/éxélx 621{/5%2}
2 1 2 2

U Hessian matrix

(k1) _ (k)
X — X
v [xED, xE D | = VE[x0), x|+ 2 £ [xH), x| L:(m) ) de
2 2
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Newton Method

m Two-dimensional case (continued)

Vf[xl(kﬂ)’xgkﬂ] Vf[xl, ]+V2f[xl, ]{Xl(kﬂ)_xl(k)}zo

(k+1)

xJrt) — x()
AxkD) y (k1) _ (k) 1
g st

Xt — x (k)
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Newton Method

m Two-dimensional case (continued)

{AXM}‘ V[ g v [, g

AxM)

f [, x 0 ]  [x0, x|+ vt [, x0T .|:Axl(k):|

Ax)

f[xk+1 k”] f[xl, ]—Vf[xl(k),xgk)]T.sz[xl("),xgk)r-Vf[xl(k),xg()]

Positive definite (convex function)
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Newton Method

m Two-dimensional case (continued)

AX ) = — 20w |x() x| AX Y = w2 £ [x) x0[*.vf [x) x]

Gradient method Newton method

N Gradient method and Newton method do not move along the
same direction

f(X)=X"TAX +B"X +C
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Newton Method

m Newton method can be extended to high-dimensional cases

m The following Hessian matrix is NxN if we have N variables

_ 82f/@xf 52f/8&6x2 . 52f/5&5XN_
V2 f(X )= 0°f Joxox,  0*f/oxz - O%f [ox,0%,
_82 f /axlaXN o’ f /8X28XN . 02f /axri _

m Numerically computing the Hessian matrix and its inverse (by
Cholesky decomposition) can be quite expensive for large N

X () = x 0 w2 [x O v [x ]
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Newton Method

m A number of modified algorithms were developed to address
this complexity issue
< E.g., quasi-Newton method

m The key idea Is to approximate the Hessian matrix and its
Inverse so that:
N The computational cost is significantly reduced
N Fast convergence can still be achieved

m More details can be found at

Numerical Recipes: The Art of Scientific Computing, 2007
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m Unconstrained Optimization
< Gradient method
< Newton method
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