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Overview 

 Unconstrained Optimization 
 Golden section search 
 Downhill simplex method 
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Unconstrained Optimization 

 Linear regression with regularization 
 
 
 

 Unconstrained optimization: minimizing a cost function 
without any constraint 
 Golden section search 
 Downhill simplex method 
 Gradient method 
 Newton method 

BA =α 1
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min αλα
α

⋅+− BA

Non-derivative method (this lecture) 

Rely on derivatives 
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Golden Section Search 

 Problem definition: find the optimum x that minimizes a one-
dimensional cost function f(x) 
 
 
 
 
 

 Key idea 
 Assume that the optimum x is within an interval [a, b] 
 Iteratively shrink [a, b] to find the solution x 

 

( )xf
x

min

x 

f(x) 

Similar (but not identical) to binary search 
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Golden Section Search 

 It is not trivial to determine the interval that contains optimal 
solution x 

x 

f(x) 

x 

f(x) 

Binary search: f(x) = 0 Golden section search: 
minimize f(x) 

a 

b c a b 

c 
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Golden Section Search 

 Require a triplet (a, b, c) to decide the appropriate interval 
 Start from (a, b, c): f(c) < f(a) and f(c) < f(b) 
 Add one extra point d 

x 

f(x) 

a b 

c d 
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Golden Section Search 

 If f(c) has the smallest value, optimal solution is within [a, d] 

x 

f(x) 

a b 

c d 

a 

c b 
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Golden Section Search 

 If f(d) has the smallest value, optimal solution is within [c, b] 

x 

f(x) 

a b 

c d 

Continue iteration until (local) convergence is reached 

a c 

b 
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Golden Section Search 

 Open question: how to decide the location of c and d? 
 

 Criterion: each iteration identically shrinks the interval 
 We will explain its meaning soon 

a b c d 

w z 1−w−z 

1 
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Golden Section Search 

 Criterion: each iteration identically shrinks the interval 
 Starting from [a, b], the next interval can be [a, d] or [c, b] 
 The length of these two intervals should be identical 

 

a b c d 

w z 1−w−z = w 

bcda −=−

1 

( )zwzzw −−+=+ 1

zww −−=1
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Golden Section Search 

 Criterion: each iteration identically shrinks the interval 
 Starting from [a, b], the next interval can be [a, d] or [c, b] 
 The ratio of these two intervals is identical 
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Golden Section Search 

 Criterion: each iteration identically shrinks the interval 
 Starting from [a, b], the next interval can be [a, d] or [c, b] 
 The ratio of these three intervals should be identical 
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Golden Section Search 

 Criterion: each iteration identically shrinks the interval 

a b c d 
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A Simple Example 

 
 

 Iteration #1 
 

( ) [ ]1,12 −∈= xwherexxf
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A Simple Example 

 
 

 Iteration #2 
 ( )
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( ) [ ]1,12 −∈= xwherexxf

w⋅|a-b| z⋅|a-b| w⋅|a-b| 
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A Simple Example 

 
 

 Iteration #3 
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w⋅|a-b| z⋅|a-b| w⋅|a-b| 
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Downhill Simplex Method 

 Golden section search is easy to implement 
 However, it is typically used for one-dimensional problem only 

 
 Multi-dimensional optimization can also be solved by non-

derivative method 
 
 

 E.g., downhill simplex method 

 
 Key idea 

 Find the optimum X by a sequence of reflection, expansion and 
contraction of a simplex 

( ) N

X
RXwhereXf ∈min
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Downhill Simplex Method 

 In N-dimensional space, a simplex is defined by N+1 non-
degenerate points 

x1 

x2 

Three non-degenerate points 
define a simplex in 2-D space 

x1 

x2 

Three degenerate points does 
NOT define a simplex in 2-D space 
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Downhill Simplex Method 

 Construct initial simplex 
 Start from an initial guess X0 ∈ RN 

 Apply perturbation in N orthogonal directions 
 
 
 
 
 
 
 

 {X0, X1, ..., XN} define a simplex 
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perturbation 
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X0 

X0+∆⋅E2 

X0+∆⋅E1 

i-th element 



Slide 20   

Downhill Simplex Method 

 Apply reflection, expansion and contraction 

x1 

x2 Gradient 

x1 

x2 Gradient 

Reflect away from large cost function value 
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Downhill Simplex Method 

 Apply reflection, expansion and contraction 

Expand towards small cost function value 

x1 

x2 Gradient 

x1 

x2 Gradient 
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Downhill Simplex Method 

 Apply reflection, expansion and contraction 

Contract towards small cost function value 

x1 

x2 Gradient 

x1 

x2 Gradient 
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Downhill Simplex Method 

 Converge to a local minimum, if a sequence of reflection, 
expansion and contraction are appropriately applied 
 Slow convergence (especially in high-dimensional cases) 
 I.e., a large number of iteration steps 

 
 If cost function is smooth, its derivative information can be 

used to search optimal solution 
 More details in future lectures 

 
 However, downhill simplex method is still required if derivatives 

are not available or too difficult to calculate 
 Cost function is not smooth 
 Cost function contains sharp changes 
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Summary 

 Unconstrained Optimization 
 Golden section search 
 Downhill simplex method 
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