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Overview 

 Geometric Problems 
 Maximum inscribed ellipsoid 
 Minimum circumscribed ellipsoid 
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Geometric Problems 

 Many geometric problems can be solved by convex programming 
 Consider maximum inscribed ellipsoid as an example 
 Derive mathematical formulation as convex optimization 

Maximum inscribed 
ellipsoid 

Minimum circumscribed 
ellipsoid 
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Maximum Inscribed Ellipsoid 

 Problem definition: 
 Given a bounded polytope, find the inscribed ellipsoid that has 

the maximal volume 

Maximal inscribed 
ellipsoid 

x2 

x1 

Polytope 
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Maximum Inscribed Ellipsoid 

 Representation of an ellipsoid 
 
 

 W is symmetric and positive definite 
 ||u||2 denotes the L2-norm of a vector 

{ }1|
2
≤+⋅==Ω uduWX A set of points inside the ellipsoid 

uuu T=
2

Length of the vector u 

x2 

x1 
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Maximum Inscribed Ellipsoid 

 Representation of an ellipsoid 

{ }1|
2
≤+⋅==Ω uduWX

( )dXWu −⋅= −1

( )[ ] ( )[ ] 1112

2
≤−⋅⋅−⋅== −− dXWdXWuuu TT

( ) ( ) 11 ≤−⋅⋅⋅− −− dXWWdX TT

Quadratic function of X 
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Maximum Inscribed Ellipsoid 

 Two examples 
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Maximum Inscribed Ellipsoid 

 Given the ellipsoid 
 
 

 and the polytope 
 
 

 we require that any X in Ω satisfies the linear inequality 

( )KkCXB k
T
k ,,2,10 =≤+

( )
( )Kk

XCXB k
T
k

,,2,1
0
=

Ω∈∀≤+

Basic condition for inscribed ellipsoid 

{ }1|
2
≤+⋅==Ω uduWX
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Maximum Inscribed Ellipsoid 

x2 

x1 

( )
( )Kk

XCXB k
T
k

,,2,1
0
=

Ω∈∀≤+

{ }1|
2
≤+⋅==Ω uduWX

0≤+ k
T
k CXB

Any X in Ω must satisfy the linear inequality 
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Maximum Inscribed Ellipsoid 

( )
( )Kk

XCXB k
T
k

,,2,1
0
=

Ω∈∀≤+{ }1|
2
≤+⋅==Ω uduWX

( )
( )Kk

uCdBuWB k
T
k

T
k

,,2,1

10
2

=

≤∀≤+⋅+⋅⋅

( ) ( )KkCdBuWB k
T
k

T
k

u
,,2,10sup

12

=≤+⋅+⋅⋅
≤

sup(•) denotes the supremum (i.e., the least upper bound) of a set 
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Maximum Inscribed Ellipsoid 

( ) 0sup
12

≤+⋅+⋅⋅
≤

k
T
k

T
k

u
CdBuWB

( ) 0sup
12

≤+⋅+⋅⋅
≤

k
T
k

T
k

u
CdBuWB

( ) 0sup
12

≤+⋅+⋅
≤

k
T
k

T

u
CdBup

k
T BWp =

Inner product of two vectors 
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Maximum Inscribed Ellipsoid 

 Inner product of two vectors 
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2211

⋅⋅=

++=⋅

up
upupupT



( )
22

1
0cos1sup

2

ppupT

u
=⋅⋅=⋅

≤

x2 

x1 

u 
p 

θ 

[ ]
[ ]T

T

uuu

ppp





21

21

=

=



Slide 13   

Maximum Inscribed Ellipsoid 

( ) 0sup
12

≤+⋅+⋅
≤

k
T
k

T

u
CdBup ( )

2
12

sup pupT

u
=⋅

≤

0
2

≤+⋅+ k
T
k CdBp

( )KkCdBBW k
T
kk

T ,,2,10
2

=≤+⋅+

k
T BWp =

Inequality constraints 
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Maximum Inscribed Ellipsoid 

 Given these inequality constraints, we want to maximize the 
ellipsoid volume 

{ }1|
2
≤+⋅==Ω uduWX

( )WVolume det∝

Why is volume proportional to the 
determinant of W? 
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Maximum Inscribed Ellipsoid 

 If W is diagonal, we have 
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( ) ( ) 11 ≤−⋅⋅⋅− −− dXWWdX TT
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Maximum Inscribed Ellipsoid 

 If W is diagonal, we have 
 
 
 
 
 
 
 
 
 
 

 d1 and d2 determine the center of the ellipsoid 
 W11 and W22 determine the semi-axes of the ellipsoid 
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Maximum Inscribed Ellipsoid 

 If W is diagonal, we have 
 

x2 

x1 

( ) ( ) 1
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Maximum Inscribed Ellipsoid 

 If W is diagonal, ellipsoid volume is proportional to 
 














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
=⋅
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0
det
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x1 
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Maximum Inscribed Ellipsoid 

 If W is not diagonal, but is symmetric and positive definite 

( )1 
2
≤⋅= uuWX

We assume d = 0, since d only changes the center 
of the ellipsoid (not its volume) 

IVV
VVW

T =

Σ⋅=⋅ (Eigenvalue decomposition) 

( )1 
2
≤⋅⋅Σ⋅= uuVVX T

( )1 
2
≤⋅⋅Σ=⋅ uuVXV TT
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Maximum Inscribed Ellipsoid 

 If W is not diagonal, but is symmetric and positive definite 
 

( )1 
2
≤⋅⋅Σ=⋅ uuVXV TT

uVq
XVY

T

T

⋅=

⋅=

( )1 
2
≤⋅⋅Σ= qVqY

x2 

x1 

Orthogonal 
rotation y1 

y2 

( )1 
2
≤⋅Σ= qqY

22
qVq =

Orthogonal rotation does not change 
the ellipsoid volume 
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Maximum Inscribed Ellipsoid 

 If W is not diagonal, but is symmetric and positive definite 

( )1 
2
≤⋅Σ= qqY

Σ is diagonal in the new coordinate system 

( )Σ∝ detVolume

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )WVVVV

VVVVVolume
detdetdetdetdet

detdetdetdetdet
11

11

=⋅Σ⋅=⋅Σ⋅=

⋅⋅Σ=⋅⋅Σ∝
−−

−−

Similarity transformation preserves the determinant value 

1−⋅Σ⋅=⋅Σ⋅= VVVVW T
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Maximum Inscribed Ellipsoid 

 Inequality constraints 
 
 

 Ellipsoid volume 
 
 

 The maximum inscribed ellipsoid (i.e., W and d) can be 
founded by solving the following optimization problem 

( )KkCdBBW k
T
kk

T ,,2,10
2

=≤+⋅+

( )WVolume det∝

( )
( )KkCdBBWTS

W

k
T
kk

T
dW

,,2,10..

detmax

2

,

=≤+⋅+

Do we miss anything? 
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Maximum Inscribed Ellipsoid 

 We need to add the constraint that W must be symmetric and 
positive definite 

( )
( )

0

,,2,10..

detmax

2

,





W
WW

KkCdBBWTS

W

T
k

T
kk

T
dW

=

=≤+⋅+

W is positive definite 

W is symmetric 

Is this optimization problem easy or difficult to solve? 
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Maximum Inscribed Ellipsoid 

 
 
 
 
 

 This optimization problem can be converted to a convex 
programming and it can be solved efficiently 

( )
( )

0

,,2,10..

detmax

2
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



W
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KkCdBBWTS
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T
k

T
kk

T
dW

=

=≤+⋅+
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Maximum Inscribed Ellipsoid 

 
 
 
 
 

 Cost function 
 
 
 
 
 

 log[det(W)] is concave – we maximize a concave cost function 

( )Wdetmax

log(•) is monotonically 
increasing ( )[ ]Wdetlogmax

( )
( )

0

,,2,10..

detmax

2

,





W
WW

KkCdBBWTS

W

T
k

T
kk

T
dW

=

=≤+⋅+
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Maximum Inscribed Ellipsoid 

 
 
 
 
 

 Constraint 
 
 

 Both ||WTBk||2 and Bk
Td are convex 

 The sum of two convex functions is convex 
 This constraint set is convex 

( )KkCdBBW k
T
kk

T ,,2,10
2

=≤+⋅+
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0

,,2,10..
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T
kk

T
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Maximum Inscribed Ellipsoid 

 
 
 
 
 

 Constraint 
 
 

 Linear equality constraint defines a convex set 

TWW =

( )
( )

0

,,2,10..

detmax
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Maximum Inscribed Ellipsoid 

 
 
 
 
 

 Constraint 
 

 The set of all positive definite matrices is convex 
 If W1 and W2 are positive definite, their positive combination is 

also positive definite 

0W

( ) 01 21 WW ⋅−+⋅ αα

Positive coefficients 

( )
( )

0

,,2,10..

detmax
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kk

T
dW

=

=≤+⋅+
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Maximum Inscribed Ellipsoid 

 
 
 
 
 

 We maximize a concave function over a convex set – a 
convex programming problem 
 

 The optimization can be solved by a convex solver 
 E.g., CVX (www.stanford.edu/~boyd/cvx/) 
 We will discuss the optimization algorithm in future lectures...  
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Summary 

 Geometric problems 
 Maximum inscribed ellipsoid 
 Minimum circumscribed ellipsoid 
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