CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

■ Geometric Problems
v Maximum inscribed ellipsoid

- Minimum circumscribed ellipsoid

Geometric Problems

■ Many geometric problems can be solved by convex programming
v Consider maximum inscribed ellipsoid as an example

- Derive mathematical formulation as convex optimization

Maximum inscribed ellipsoid

Minimum circumscribed ellipsoid

Maximum Inscribed Ellipsoid

- Problem definition:
v Given a bounded polytope, find the inscribed ellipsoid that has the maximal volume

Maximum Inscribed Ellipsoid

- Representation of an ellipsoid

$$
\Omega=\left\{X=W \cdot u+d \mid\|u\|_{2} \leq 1\right\} \quad \text { A set of points inside the ellipsoid }
$$

V W is symmetric and positive definite
$\boldsymbol{v}\|u\|_{2}$ denotes the L_{2}-norm of a vector

$$
\|u\|_{2}=\sqrt{u^{T} u} \quad \text { Length of the vector } u
$$

Maximum Inscribed Ellipsoid

- Representation of an ellipsoid

$$
\Omega=\left\{X=W \cdot u+d \mid\|u\|_{2} \leq 1\right\}
$$

$$
u=W^{-1} \cdot(X-d)
$$

$$
\begin{gathered}
\|u\|_{2}^{2}=u^{T} u=\left[W^{-1} \cdot(X-d)\right]^{T} \cdot\left[W^{-1} \cdot(X-d)\right] \leq 1 \\
\frac{(X-d)^{T} \cdot W^{-T} \cdot W^{-1} \cdot(X-d)}{\downarrow} \leq 1
\end{gathered}
$$

Quadratic function of X

Maximum Inscribed Ellipsoid

- Two examples

$$
\Omega=\left\{X=W \cdot u+d \mid\|u\|_{2} \leq 1\right\}
$$

$$
\begin{array}{r}
W=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
d=0
\end{array}
$$

$$
\begin{gathered}
W=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] \\
d=0
\end{gathered}
$$

Maximum Inscribed Ellipsoid

■ Given the ellipsoid

$$
\Omega=\left\{X=W \cdot u+d \mid\|u\|_{2} \leq 1\right\}
$$

\checkmark and the polytope

$$
B_{k}^{T} X+C_{k} \leq 0 \quad(k=1,2, \cdots, K)
$$

ve require that any X in Ω satisfies the linear inequality

$$
\begin{gathered}
B_{k}^{T} X+C_{k} \leq 0 \quad(\forall X \in \Omega) \\
(k=1,2, \cdots, K)
\end{gathered}
$$

Basic condition for inscribed ellipsoid

Maximum Inscribed Ellipsoid

$$
\begin{gathered}
B_{k}^{T} X+C_{k} \leq 0 \quad(\forall X \in \Omega) \\
(k=1,2, \cdots, K)
\end{gathered}
$$

Maximum Inscribed Ellipsoid

$$
\Omega=\left\{X=W \cdot u+d \mid\|u\|_{2} \leq 1\right\} \quad B_{k}^{T} X+C_{k} \leq 0 \quad(\forall X \in \Omega)
$$

$$
\begin{gathered}
B_{k}^{T} \cdot W \cdot u+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad\left(\forall\|u\|_{2} \leq 1\right) \\
(k=1,2, \cdots, K)
\end{gathered}
$$

$$
\sup _{\|u\|_{2} \leq 1}\left(B_{k}^{T} \cdot W \cdot u+B_{k}^{T} \cdot d+C_{k}\right) \leq 0 \quad(k=1,2, \cdots, K)
$$

$\sup (\bullet)$ denotes the supremum (i.e., the least upper bound) of a set

Maximum Inscribed Ellipsoid

$$
\begin{aligned}
& \sup _{\|u\|_{2} \leq 1}\left(B_{k}^{T} \cdot W \cdot u+B_{k}^{T} \cdot d+C_{k}\right) \leq 0 \\
& \sup _{\|u\|_{2} \leq 1}\left(B_{k}^{T} \cdot W \cdot u\right)+B_{k}^{T} \cdot d+C_{k} \leq 0 \\
& \sup _{\|u\|_{2} \leq 1}\left(p^{T} \cdot u\right)+B_{k}^{T} \cdot d+C_{k} \leq 0 \\
& \text { Inner product of two vectors }
\end{aligned}
$$

Maximum Inscribed Ellipsoid

■ Inner product of two vectors

$$
\begin{aligned}
& p=\left[\begin{array}{lll}
p_{1} & p_{2} & \cdots
\end{array}\right]^{T} \\
& u=\left[\begin{array}{lll}
u_{1} & u_{2} & \cdots
\end{array}\right]^{T}
\end{aligned}
$$

$$
p^{T} \cdot u=p_{1} u_{1}+p_{2} u_{2}+\cdots
$$

$$
=\|p\|_{2} \cdot\|u\|_{2} \cdot \cos \theta
$$

$\sup _{\|u\|_{2} \leq 1}\left(p^{T} \cdot u\right)=\|p\|_{2} \cdot 1 \cdot \cos 0=\|p\|_{2}$

Maximum Inscribed Ellipsoid

$$
\sup _{\|u\|_{2} \leq 1}\left(p^{T} \cdot u\right)+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad \sup _{\|u\|_{2} \leq 1}\left(p^{T} \cdot u\right)=\|p\|_{2}
$$

$$
\|p\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0
$$

$$
\sum p=W^{T} B_{k}
$$

$$
\left\|W^{T} B_{k}\right\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad(k=1,2, \cdots, K)
$$

Inequality constraints

Maximum Inscribed Ellipsoid

■ Given these inequality constraints, we want to maximize the ellipsoid volume

$$
\Omega=\left\{X=W \cdot u+d \mid\|u\|_{2} \leq 1\right\}
$$

Volume $\propto \operatorname{det}(W)$
Why is volume proportional to the determinant of W ?

Maximum Inscribed Ellipsoid

■ If W is diagonal, we have

$$
\begin{gathered}
X=W \cdot u+d\left(\|u\|_{2} \leq 1\right) \\
\square \\
\square\left(\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{cc}
W_{11} & 0 \\
0 & W_{22}
\end{array}\right] \cdot u+\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]\left(\|u\|_{2} \leq 1\right) \\
\left(\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]-\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]\right)^{T} \cdot\left[\begin{array}{cc}
W_{11}^{-1} & 0 \\
0 & W_{22}^{-1}
\end{array}\right] \cdot\left[\begin{array}{cc}
W_{11}^{-1} & 0 \\
0 & W_{22}^{-1}
\end{array}\right] \cdot\left(\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]\right) \leq 1
\end{gathered}
$$

Maximum Inscribed Ellipsoid

■ If W is diagonal, we have

$$
\begin{gathered}
\left(\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]-\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]\right)^{T} \cdot\left[\begin{array}{cc}
W_{11}^{-1} & 0 \\
0 & W_{22}^{-1}
\end{array}\right] \cdot\left[\begin{array}{cc}
W_{11}^{-1} & 0 \\
0 & W_{22}^{-1}
\end{array}\right] \cdot\left(\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]-\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]\right) \leq 1 \\
\square \\
\frac{\left(X_{1}-d_{1}\right)^{2}}{W_{11}^{2}}+\frac{\left(X_{2}-d_{2}\right)^{2}}{W_{22}^{2}} \leq 1
\end{gathered}
$$

$\checkmark d_{1}$ and d_{2} determine the center of the ellipsoid

- W_{11} and W_{22} determine the semi-axes of the ellipsoid

Maximum Inscribed Ellipsoid

■ If W is diagonal, we have

$$
\frac{\left(X_{1}-d_{1}\right)^{2}}{W_{11}^{2}}+\frac{\left(X_{2}-d_{2}\right)^{2}}{W_{22}^{2}} \leq 1
$$

Maximum Inscribed Ellipsoid

■ If W is diagonal, ellipsoid volume is proportional to

$$
W_{11} \cdot W_{22}=\operatorname{det}\left(\left[\begin{array}{cc}
W_{11} & 0 \\
0 & W_{22}
\end{array}\right]\right)
$$

Maximum Inscribed Ellipsoid

■ If W is not diagonal, but is symmetric and positive definite

$$
X=W \cdot u \quad\left(\|u\|_{2} \leq 1\right)
$$

We assume $d=0$, since d only changes the center of the ellipsoid (not its volume)

$$
\begin{aligned}
& X=V \cdot \Sigma \cdot V^{T} \cdot u \quad \begin{array}{c}
W \cdot V=V \cdot \Sigma \\
V^{T} V=I
\end{array} \quad\left(\|u\|_{2} \leq 1\right) \\
& \text { (Eigenvalue decomposition) } \\
& V^{T} \cdot X=\Sigma \cdot V^{T} \cdot u \quad\left(\|u\|_{2} \leq 1\right)
\end{aligned}
$$

Maximum Inscribed Ellipsoid

■ If W is not diagonal, but is symmetric and positive definite

$$
V^{T} \cdot X=\Sigma \cdot V^{T} \cdot u \quad\left(\|u\|_{2} \leq 1\right)
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Orthogonal } \\
\text { rotation }
\end{array} \downarrow \begin{array}{l}
Y=V^{T} \cdot X \\
q=V^{T} \cdot u
\end{array} \\
Y=\Sigma \cdot q \quad\left(\|V \cdot q\|_{2} \leq 1\right) \\
Y=\Sigma \cdot q \quad\left(\|q\|_{2} \leq 1\right)
\end{gathered}
$$

Orthogonal rotation does not change the ellipsoid volume

Maximum Inscribed Ellipsoid

■ If W is not diagonal, but is symmetric and positive definite

$$
Y=\Sigma \cdot q \quad\left(\|q\|_{2} \leq 1\right)
$$

Σ is diagonal in the new coordinate system

Volume $\propto \operatorname{det}(\Sigma)$

$$
\beth W=V \cdot \Sigma \cdot V^{T}=V \cdot \Sigma \cdot V^{-1}
$$

Volume $\propto \operatorname{det}(\Sigma) \cdot \operatorname{det}\left(V \cdot V^{-1}\right)=\operatorname{det}(\Sigma) \cdot \operatorname{det}(V) \cdot \operatorname{det}\left(V^{-1}\right)$

$$
=\operatorname{det}(V) \cdot \operatorname{det}(\Sigma) \cdot \operatorname{det}\left(V^{-1}\right)=\operatorname{det}\left(V \cdot \Sigma \cdot V^{-1}\right)=\operatorname{det}(W)
$$

Similarity transformation preserves the determinant value

Maximum Inscribed Ellipsoid

■ Inequality constraints

$$
\left\|W^{T} B_{k}\right\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad(k=1,2, \cdots, K)
$$

■ Ellipsoid volume

$$
\text { Volume } \propto \operatorname{det}(W)
$$

\square The maximum inscribed ellipsoid (i.e., W and d) can be founded by solving the following optimization problem

$$
\begin{array}{ll}
\max _{W, d} & \operatorname{det}(W) \\
\text { S.T. } & \left\|W^{T} B_{k}\right\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad(k=1,2, \cdots, K) \\
\text { Do we miss anything? }
\end{array}
$$

Maximum Inscribed Ellipsoid

■ We need to add the constraint that W must be symmetric and positive definite

$$
\begin{array}{ll}
\max _{W, d} & \operatorname{det}(W) \\
S . T . & \left\|W^{T} B_{k}\right\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad(k=1,2, \cdots, K) \\
& W=W^{T} \\
& W \succ 0 \quad W \text { is symmetric } \\
& \downarrow
\end{array}
$$

W is positive definite

Is this optimization problem easy or difficult to solve?

Maximum Inscribed Ellipsoid

$$
\begin{array}{ll}
\max _{W, d} & \operatorname{det}(W) \\
S . T . & \left\|W^{T} B_{k}\right\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad(k=1,2, \cdots, K) \\
& W=W^{T} \\
& W \succ 0
\end{array}
$$

- This optimization problem can be converted to a convex programming and it can be solved efficiently

Maximum Inscribed Ellipsoid

$$
\begin{array}{ll}
\max _{W, d} & \operatorname{det}(W) \\
S . T . & \left\|W^{T} B_{k}\right\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad(k=1,2, \cdots, K) \\
& W=W^{T} \\
& W \succ 0
\end{array}
$$

- Cost function

$\checkmark \log [\operatorname{det}(\mathrm{W})]$ is concave - we maximize a concave cost function

Maximum Inscribed Ellipsoid

$$
\begin{array}{ll}
\max _{W, d} & \operatorname{det}(W) \\
S . T . & \left\|W^{T} B_{k}\right\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad(k=1,2, \cdots, K) \\
& W=W^{T} \\
& W \succ 0
\end{array}
$$

- Constraint

$$
\left\|W^{T} B_{k}\right\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad(k=1,2, \cdots, K)
$$

- Both $\left\|\mathrm{W}^{\top} \mathrm{B}_{\mathrm{k}}\right\|_{2}$ and $\mathrm{B}_{\mathrm{k}}{ }^{\top} \mathrm{d}$ are convex
- The sum of two convex functions is convex
\checkmark This constraint set is convex

Maximum Inscribed Ellipsoid

$$
\begin{array}{ll}
\max _{W, d} & \operatorname{det}(W) \\
S . T . & \left\|W^{T} B_{k}\right\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad(k=1,2, \cdots, K) \\
& W=W^{T} \\
& W \succ 0
\end{array}
$$

■ Constraint

$$
W=W^{T}
$$

vinear equality constraint defines a convex set

Maximum Inscribed Ellipsoid

$$
\begin{array}{ll}
\max _{W, d} & \operatorname{det}(W) \\
S . T . & \left\|W^{T} B_{k}\right\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad(k=1,2, \cdots, K) \\
& W=W^{T} \\
& W \succ 0
\end{array}
$$

■ Constraint

$$
W \succ 0
$$

∇ The set of all positive definite matrices is convex
\checkmark If W_{1} and W_{2} are positive definite, their positive combination is also positive definite

$$
\frac{\alpha \cdot W_{1}}{}+\underline{(1-\alpha)} \cdot W_{2} \succ 0
$$

Positive coefficients

Maximum Inscribed Ellipsoid

$$
\begin{array}{ll}
\max _{W, d} & \operatorname{det}(W) \\
S . T . & \left\|W^{T} B_{k}\right\|_{2}+B_{k}^{T} \cdot d+C_{k} \leq 0 \quad(k=1,2, \cdots, K) \\
& W=W^{T} \\
& W \succ 0
\end{array}
$$

- We maximize a concave function over a convex set - a convex programming problem
- The optimization can be solved by a convex solver
v E.g., CVX (www.stanford.edu/~boyd/cvx/)
- We will discuss the optimization algorithm in future lectures...

Summary

■ Geometric problems
v Maximum inscribed ellipsoid

- Minimum circumscribed ellipsoid

