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Overview 

 Classification 
 Support vector machine 
 Regularization 
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Classification 

 Predict categorical output (i.e., two or multiple classes) from 
input attributes (i.e., features) 
 

 Example: two-class classification 
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Classification 

 Classification vs. regression 

Classification 

Regression Input 
attributes 

Input 
attributes 

Prediction of 
real-valued output 

Prediction of 
categorical output 
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Classification Examples 

 Identify hand-written digits from US zip codes 

Bishop, Pattern recognition and machine learning, 2007 
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Classification Examples 

 Identify geometrical structure from oil flow data 

Bishop, Pattern recognition and machine learning, 2007 

Blue: geometrical structure 1 
Green: geometrical structure 2 
Red: geometrical structure 3 
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Support Vector Machine (SVM) 

 Support vector machine (SVM) is a popular algorithm used for 
many classification problems 
 Key idea: maximize classification margin (immune to noise) 

 
 Two-class linear support vector machine 
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Margin Calculation 

 To maximize margin, we must first represent margin as a 
function of W and C 
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(Right-hand side can be normalized to ±1) 
Support vectors 
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Margin Calculation 

 W is perpendicular to plus/minus planes 
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Margin Calculation 

 Margin equals to the distance between Xm and Xp 
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Margin Calculation 
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Margin Calculation 
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Mathematical Formulation 

 Start from a set of training samples 
( ) ( )NiyX ii ,,2,1, =

Xi: input feature of i-th sampling point 
yi: output label of i-th sampling point 
 Class A → yi = 1 
 Class B → yi = −1 
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Mathematical Formulation 

 Formulate a convex optimization problem 
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A Simple SVM Example 

 Two training samples 
 Class A: x1 = 1, x2 = 1 and y = 1 
 Class B: x1 = −1, x2 = −1 and y = −1 
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Solve w1, w2 and C to determine classifier 
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A Simple SVM Example 

 Two training samples 
 Class A: x1 = 1, x2 = 1 and y = 1 
 Class B: x1 = −1, x2 = −1 and y = −1 
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A Simple SVM Example 
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A Simple SVM Example 

 Two training samples 
 Class A: x1 = 1, x2 = 1 and y = 1 
 Class B: x1 = −1, x2 = −1 and y = −1 

 

x1  

Class A 

Class B 

x2  

( ) ( )
( )



<
≥

+=
BClass
AClass

xxXf
 0
 0

5.05.0 21

0
5.021

=
==

C
ww

05.05.0 21 =+ xx



Slide 19   

Support Vector Machine with Noise 

 In practice, training samples may contain noise or are not 
linearly separable 
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Support Vector Machine with Noise 

 Can be solved by convex programming 
 Cost : sum of two convex functions 
 Constraints: linear and hence convex 

(Convex optimization) 
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Regularization 

 Regression vs. classification 
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Other regularization forms can also be used for support 
vector machine 
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Regularization 

 L1-norm regularization is used to find a sparse solution of W 
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Important for feature selection 
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Regularization 

 Feature selection 

( ) ( )
( )



<
≥

+=
BClass
AClass

CXWXf T

 0
 0

[ ]























⋅××

5

4

3

2

1

000

x
x
x
x
x

WT 

X 

Important features 



Slide 24   

Summary 

 Classification 
 Support vector machine 
 Regularization 
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