CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

- Classification
, Support vector machine
- Regularization

Classification

■ Predict categorical output (i.e., two or multiple classes) from input attributes (i.e., features)

■ Example: two-class classification

$$
f(X)=W^{T} X+C \begin{cases}\geq 0 & (\text { Class } A) \\ <0 & (\text { Class } B)\end{cases}
$$

Classification

■ Classification vs. regression

Classification Examples

■ Identify hand-written digits from US zip codes

Bishop, Pattern recognition and machine learning, 2007

Classification Examples

- Identify geometrical structure from oil flow data

Blue: geometrical structure 1 Green: geometrical structure 2 Red: geometrical structure 3

Bishop, Pattern recognition and machine learning, 2007

Support Vector Machine (SVM)

■ Support vector machine (SVM) is a popular algorithm used for many classification problems

- Key idea: maximize classification margin (immune to noise)

■ Two-class linear support vector machine

Margin Calculation

- To maximize margin, we must first represent margin as a function of W and C

Support vectors

$$
f(X)=W^{T} X+C \begin{cases}\geq 0 & (\text { Class } A) \\ <0 & (\text { Class } B)\end{cases}
$$

Plus plane

$$
W^{T} X+C=1
$$

Minus plane $W^{T} X+C=-1$
(Right-hand side can be normalized to ± 1)

Margin Calculation

■ W is perpendicular to plus/minus planes

$$
\text { Plus plane } \quad W^{T} X+C=1
$$

Minus plane $W^{T} X+C=-1$

$$
\begin{gathered}
W^{T} A+C=1 \\
W^{T} B+C=1 \\
\square \\
W^{T} \cdot(A-B)=0
\end{gathered}
$$

W is perpendicular to $(A-B)$

Margin Calculation

- Margin equals to the distance between X_{m} and X_{p}

$$
X_{p}=X_{m}+\lambda W \quad \sqsubset \quad \text { Margin }=\left\|X_{p}-X_{m}\right\|_{2}=\|\lambda W\|_{2}
$$

Find λ to determine margin

Margin Calculation

$$
\begin{aligned}
& X_{p}=X_{m}+\lambda W \\
& W^{T} X_{p}+C=1 \\
& W^{T} X_{m}+C=-1
\end{aligned} \quad \square W^{T} \cdot\left(X_{p}-X_{m}\right)=\lambda W^{T} W=2
$$

Margin Calculation

$\lambda W^{T} W=2 \quad \square \lambda=\frac{2}{W^{T} W} \quad \square$ Margin $=\|\lambda W\|_{2}=\lambda \cdot \sqrt{W^{T} W}=\frac{2}{\sqrt{W^{T} W}}$
Maximizing margin implies minimizing $\|W\|_{2}$

Mathematical Formulation

■ Start from a set of training samples

$$
\left(X_{i}, y_{i}\right) \quad(i=1,2, \cdots, N)
$$

X_{i} : \quad input feature of i-th sampling point $y_{i}: \quad$ output label of i-th sampling point

Class $A \rightarrow y_{i}=1$
Class $B \rightarrow y_{i}=-1$
Class A:

$$
\begin{gathered}
W^{T} X_{i}+C \geq 1 \quad y_{i}=1 \\
y_{i} \cdot\left(W^{T} X_{i}+C\right) \geq 1
\end{gathered}
$$

Class B:

$$
\begin{gathered}
W^{T} X_{i}+C \leq-1 \quad y_{i}=-1 \\
y_{i} \cdot\left(W^{T} X_{i}+C\right) \geq 1
\end{gathered}
$$

Mathematical Formulation

- Formulate a convex optimization problem
$\begin{array}{ll}\max _{W, C} & \frac{2}{\sqrt{W^{T} W}} \longrightarrow \text { Maximize margin } \\ \text { S.T. } & y_{i} \cdot\left(W^{T} X_{i}+C\right) \geq 1 \longrightarrow \text { All data samples are in the right class } \\ & (i=1,2, \cdots, N)\end{array}$

min $W^{T} W \quad$ Convex quadratic function
S.T. $y_{i} \cdot\left(W^{T} X_{i}+C\right) \geq 1 \longrightarrow$ Linear constraints

$$
(i=1,2, \cdots, N)
$$

(Convex optimization)

A Simple SVM Example

■ Two training samples
\checkmark Class A: $x_{1}=1, x_{2}=1$ and $y=1$
\checkmark Class B: $x_{1}=-1, x_{2}=-1$ and $y=-1$

$$
f(X)=w_{1} x_{1}+w_{2} x_{2}+C \quad \begin{cases}\geq 0 & (\text { Class } A) \\ <0 & (\text { Class } B)\end{cases}
$$

A Simple SVM Example

- Two training samples
\checkmark Class A: $x_{1}=1, x_{2}=1$ and $y=1$
\checkmark Class B: $x_{1}=-1, x_{2}=-1$ and $y=-1$

$$
\begin{array}{ll}
\min _{W, C} & W^{T} W \\
\text { S.T. } & y_{i} \cdot\left(W^{T} X_{i}+C\right) \geq 1 \\
& (i=1,2, \cdots, N)
\end{array}
$$

$$
\begin{array}{ll}
\min _{W, C} & w_{1}^{2}+w_{2}^{2} \\
\text { S.T. } & 1 \cdot\left(w_{1}+w_{2}+C\right) \geq 1 \\
& -1 \cdot\left(-w_{1}-w_{2}+C\right) \geq 1
\end{array}
$$

A Simple SVM Example

$$
\begin{array}{cc}
\min _{W, C} & w_{1}^{2}+w_{2}^{2} \\
\text { S.T. } & 1 \cdot\left(w_{1}+w_{2}+C\right) \geq 1 \\
& -1 \cdot\left(-w_{1}-w_{2}+C\right) \geq 1 \\
\min _{W, C} & w_{1}^{2}+w_{2}^{2} \\
\text { S.T. } & w_{1}+w_{2} \geq 1-C \\
& w_{1}+w_{2} \geq 1+C \\
& \square \\
\min _{W, C} & w_{1}^{2}+w_{2}^{2} \\
\text { S.T. } & w_{1}+w_{2} \geq 1+|C|
\end{array}
$$

$$
\begin{gathered}
w_{1}=w_{2}=0.5 \\
C=0
\end{gathered}
$$

A Simple SVM Example

- Two training samples
\checkmark Class A: $x_{1}=1, x_{2}=1$ and $y=1$
\checkmark Class B: $x_{1}=-1, x_{2}=-1$ and $y=-1$

$$
\begin{gathered}
w_{1}=w_{2}=0.5 \\
C=0
\end{gathered}
$$

$f(X)=0.5 x_{1}+0.5 x_{2} \begin{cases}\geq 0 & (\text { Class } A) \\ <0 & (\text { Class } B)\end{cases}$

Support Vector Machine with Noise

■ In practice, training samples may contain noise or are not linearly separable

$$
\begin{array}{ll}
\min _{W, C} & W^{T} W \\
\text { S.T. } & y_{i} \cdot\left(W^{T} X_{i}+C\right) \geq 1 \\
& (i=1,2, \cdots, N)
\end{array}
$$

(No feasible solution)

	\nearrow by cross validation	
$\min _{W, C, \xi}$	$\sum \xi_{i}+\lambda \cdot W^{T} W$	
S.T.	$y_{i} \cdot\left(W^{T} X_{i}+C\right) \geq 1-\xi_{i}$	
	$\xi_{i} \geq 0$	
	$(i=1,2, \cdots, N) \quad$ Error of i-th	
	training sample	

Support Vector Machine with Noise

■ Can be solved by convex programming
v Cost : sum of two convex functions
v Constraints: linear and hence convex

(Convex optimization)

Regularization

■ Regression vs. classification

$$
\min _{\alpha}\|A \cdot \alpha-B\|_{2}^{2}+\lambda \cdot\|\alpha\|_{2}^{2}
$$

Regression

\[

\]

Support vector machine

Other regularization forms can also be used for support vector machine

Regularization

■ L_{1}-norm regularization is used to find a sparse solution of W

Important for feature selection

Regularization

- Feature selection

$$
f(X)=W^{T} X+C \begin{cases}\geq 0 & (\text { Class } A) \\ <0 & (\text { Class } B)\end{cases}
$$

Summary

- Classification

マ Support vector machine

- Regularization

