

18-660: Numerical Methods for Engineering Design and Optimization

Xin Li Department of ECE Carnegie Mellon University Pittsburgh, PA 15213

Overview

Compressed Sensing

Orthogonal matching pursuit (OMP)

L₁-Norm Regularization

L₁-norm regularization is often used to find sparse solution of a linear equation

$$\min_{\alpha} \|A\alpha - B\|_{2}^{2}$$

S.T. $\|\alpha\|_{1} \leq \lambda$

(Convex optimization)

L₁-norm regularization has been applied to a large number of practical problems

In this lecture, we will focus on the compressed sensing problem for image processing

- Our focus: image re-construction
 - Sample an image at a small number of spatial locations
 - Recover full image by a numerical algorithm

Original image

Recovered image

A 2-D image can be mapped to frequency domain by discrete cosine transform (DCT)

$$G(u,v) = \sum_{x=1}^{P} \sum_{y=1}^{Q} a_u \cdot b_v \cdot g(x,y) \cdot \cos \frac{\pi (2x-1)(u-1)}{2 \cdot P} \cdot \cos \frac{\pi (2y-1)(v-1)}{2 \cdot Q}$$

DCT coefficient Image pixel

Original image

$$x, u \in \{1, 2, \cdots, P\}$$

$$y, v \in \{1, 2, \cdots, Q\}$$

$$a_u = \begin{cases} \sqrt{1/P} & (u = 1) \\ \sqrt{2/P} & (2 \le u \le P) \end{cases}$$

$$b_v = \begin{cases} \sqrt{1/Q} & (v = 1) \\ \sqrt{2/Q} & (2 \le v \le Q) \end{cases}$$

A 2-D image can be uniquely determined by inverse discrete cosine transform (IDCT), if all DCT coefficients are known

$$g(x, y) = \sum_{u=1}^{P} \sum_{v=1}^{Q} a_u \cdot b_v \cdot G(u, v) \cdot \cos \frac{\pi (2x-1)(u-1)}{2 \cdot P} \cdot \cos \frac{\pi (2y-1)(v-1)}{2 \cdot Q}$$

mage pixel DCT coefficient

Original image

$$x, u \in \{1, 2, \cdots, P\}$$
$$y, v \in \{1, 2, \cdots, Q\}$$
$$a_u = \begin{cases} \sqrt{1/P} & (u = 1) \\ \sqrt{2/P} & (2 \le u \le P) \end{cases}$$
$$b_v = \begin{cases} \sqrt{1/Q} & (v = 1) \\ \sqrt{2/Q} & (2 \le v \le Q) \end{cases}$$

Sample a 2-D image at a number of (say, M) spatial locations
 Result in a set of (i.e., M) linear equations

$$g(x_{1}, y_{1}) = \sum_{u=1}^{P} \sum_{v=1}^{Q} a_{u} \cdot b_{v} \cdot G(u, v) \cdot \cos \frac{\pi (2x_{1} - 1)(u - 1)}{2 \cdot P} \cdot \cos \frac{\pi (2y_{1} - 1)(v - 1)}{2 \cdot Q}$$

$$g(x_{2}, y_{2}) = \sum_{u=1}^{P} \sum_{v=1}^{Q} a_{u} \cdot b_{v} \cdot G(u, v) \cdot \cos \frac{\pi (2x_{2} - 1)(u - 1)}{2 \cdot P} \cdot \cos \frac{\pi (2y_{2} - 1)(v - 1)}{2 \cdot Q}$$

$$\vdots$$

$$g(x_{M}, y_{M}) = \sum_{u=1}^{P} \sum_{v=1}^{Q} a_{u} \cdot b_{v} \cdot G(u, v) \cdot \cos \frac{\pi (2x_{M} - 1)(u - 1)}{2 \cdot P} \cdot \cos \frac{\pi (2y_{M} - 1)(v - 1)}{2 \cdot Q}$$

$$\exists \text{mage pixel} \text{DCT coefficient}$$

Our goal is to solve all DCT coefficients from these linear equations

Re-write the linear equation in matrix form

Original image

Result in an under-determined linear equation, since we have less sampling locations than unknown DCT coefficients

Additional information is required to uniquely solve underdetermined linear equation

Explore sparsity to find unique, deterministic solution from under-determined equation

We know that α is sparse – but we do not know the exact location of zeros

¬ Find the sparse solution α (i.e., DCT coefficients) for $A\alpha = B$

Apply inverse DCT transform to recover full image

- Compressed sensing is a general technique that is applicable to many other practical problems
 - Image re-construction is one of the application examples
- More details on compressed sensing can be found at

Candes, "Compressive sampling," International Congress of Mathematicians, 2006 Donoho, "Compressed sensing," IEEE Trans. Information Theory, 2006.

Another way to find sparse solution is L₀-norm regularization

$$\min_{\alpha} \|A\alpha - B\|_{2}^{2}$$

S.T.
$$\|\alpha\|_{0} \leq \lambda$$
 (VERY difficult to solve)

Number of non-zeros in $\boldsymbol{\alpha}$

- Efficient numerical algorithm exists to find an approximate (i.e., sub-optimal) solution
 - E.g., orthogonal matching pursuit

Goal:

Identify a subset of DCT coefficients that are non-zero

Approach:

 Find important DCT coefficients by checking the inner product between A_i and B

α

Assume that each A_i is normalized (i.e., has unit length)

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} A_1 & A_2 & A_3 & A_4 & \cdots \\ \mathbf{B} & \mathbf{A} & & \mathbf{A} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix}$$

$$\langle A_i, B \rangle = A_i^T B$$

Inner product

- Inner product <A_i, B> implies the importance of A_i when approximating B
- 2-D example

2-D example

 $\alpha_1 \cdot A_1 + \alpha_2 \cdot A_2 \approx B$

Step 1: Calculate <A₁, B> and <A₂, B>

- Step 2: Select A_i that corresponds to the largest inner product magnitude (i.e., A₁ in this example)
- **¬** Step 3: Solve the coefficient α_1 by least-squares fitting

$$\min_{\alpha_1} \|\alpha_1 \cdot A_1 - B\|_2^2$$

• Step 4: Set $\alpha_2 = 0$ (B is independent of A_2 in this example)

2-D example

 $\alpha_1 \cdot A_1 + \alpha_2 \cdot A_2 \approx B$

A₁ and A₂ are not orthogonal
B is not orthogonal to A₁ or A₂

2-D example

 $\alpha_1 \cdot A_1 + \alpha_2 \cdot A_2 \approx B$

Step 1: Calculate <A₁, B> and <A₂, B>

- Step 2: Select A_i that corresponds to the largest inner product magnitude (i.e., A₁ in this example)
- **¬** Step 3: Solve the coefficient α_1 by least-squares fitting

$$\min_{\alpha_1} \|\alpha_1 \cdot A_1 - B\|_2^2$$

$$A_2$$

$$B$$

 $\alpha_1 A_1 A_1$

2-D example

$$\alpha_1 \cdot A_1 + \alpha_2 \cdot A_2 \approx B$$

Step 4: Calculate the residue

 $F = B - \alpha_1 \cdot A_1$ (F is orthogonal to A₁)

- **•** Step 5: Calculate $<A_1$, F> and $<A_2$, F>
- Step 6: Select A_i that corresponds to the largest inner product magnitude (i.e., A₂ in this example)

2-D example

 $\alpha_1 \cdot A_1 + \alpha_2 \cdot A_2 \approx B$

¬ Step 7: Solve the coefficients α_1 and α_2 by least-squares fitting

 $\min_{\alpha_1,\alpha_2} \|\alpha_1 \cdot A_1 + \alpha_2 \cdot A_2 - B\|_2^2$ (\alpha_1 is re-calculated)

General OMP algorithm to solve underdetermined linear equation

$$\min_{\alpha} \quad \left\| A \alpha - B \right\|_{2}^{2}$$

S.T.
$$\left\| \alpha \right\|_{0} \le \lambda$$

¬ Step 1: Set F = B, Ω = { } and p = 1

- **T** Step 2: Calculate the inner product values $\theta_i = \langle A_i, F \rangle$
- **¬** Step 3: Identify the index s for which $|\theta_s|$ takes the largest value
- **Step 4**: Update Ω by $\Omega = \Omega \cup \{s\}$
- **¬** Step 5: Approximate B by the linear combination of $\{A_i; i \in \Omega\}$

$$\min_{\alpha_i,i\in\Omega} \quad \left\|\sum_{i\in\Omega}\alpha_i\cdot A_i - B\right\|_2^2$$

Step 6: Update F

$$F = B - \sum_{i \in \Omega} \alpha_i \cdot A_i$$

■ Step 7: If p < λ , p = p+1 and go to Step 2. Otherwise, stop. $\alpha_i = 0$ (*i* ∉ Ω)

$$\min_{\alpha} \|A\alpha - B\|_{2}^{2}$$

S.T. $\|\alpha\|_{0} \leq \lambda$

Orthogonal matching pursuit is a heuristic algorithm to solve the L₀-norm regularization problem

A number of other heuristic algorithms exist to solve underdetermined linear equation

More details can be found in compressed sensing papers

Summary

Compressed sensing

Orthogonal matching pursuit (OMP)