CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

■ Compressed Sensing
v Orthogonal matching pursuit (OMP)

L_{1}-Norm Regularization

■ L_{1}-norm regularization is often used to find sparse solution of a linear equation

$$
\begin{array}{cl}
\min _{\alpha} & \|A \alpha-B\|_{2}^{2} \\
\text { S.T. } & \|\alpha\|_{1} \leq \lambda
\end{array}
$$

(Convex optimization)
■ L_{1}-norm regularization has been applied to a large number of practical problems
v In this lecture, we will focus on the compressed sensing problem for image processing

Compressed Sensing

■ Our focus: image re-construction
v Sample an image at a small number of spatial locations
v Recover full image by a numerical algorithm

Original image

Recovered image

Compressed Sensing

- A 2-D image can be mapped to frequency domain by discrete cosine transform (DCT)

$$
\begin{aligned}
& \frac{G(u, v)}{}=\sum_{x=1}^{p} \sum_{y=1}^{Q} a_{u} \cdot b_{v} \cdot \frac{g(x, y) \cdot \cos \frac{\pi(2 x-1)(u-1)}{2 \cdot P}}{\text { Image pixel }} \cdot \cos \frac{\pi(2 y-1)(v-1)}{2 \cdot Q} \\
& \operatorname{DCT} \text { coefficient }
\end{aligned}
$$

Original image

$$
\begin{gathered}
x, u \in\{1,2, \cdots, P\} \\
y, v \in\{1,2, \cdots, Q\} \\
a_{u}= \begin{cases}\sqrt{1 / P} & (u=1) \\
\sqrt{2 / P} & (2 \leq u \leq P)\end{cases} \\
b_{v}= \begin{cases}\sqrt{1 / Q} & (v=1) \\
\sqrt{2 / Q} & (2 \leq v \leq Q)\end{cases}
\end{gathered}
$$

Compressed Sensing

- A 2-D image can be uniquely determined by inverse discrete cosine transform (IDCT), if all DCT coefficients are known

$$
\underset{\text { Image pixel }}{g(x, y)}=\sum_{u=1}^{p} \sum_{v=1}^{Q} a_{u} \cdot b_{v} \cdot \underline{G(u, v) \cdot \cos \frac{\pi(2 x-1)(u-1)}{2 \cdot P} \cdot \cos \frac{\pi(2 y-1)(v-1)}{2 \cdot Q}}
$$

Original image

$$
\begin{gathered}
x, u \in\{1,2, \cdots, P\} \\
y, v \in\{1,2, \cdots, Q\} \\
a_{u}= \begin{cases}\sqrt{1 / P} & (u=1) \\
\sqrt{2 / P} & (2 \leq u \leq P)\end{cases} \\
b_{v}= \begin{cases}\sqrt{1 / Q} & (v=1) \\
\sqrt{2 / Q} & (2 \leq v \leq Q)\end{cases}
\end{gathered}
$$

Compressed Sensing

■ Sample a 2-D image at a number of (say, M) spatial locations
\checkmark Result in a set of (i.e., M) linear equations

$$
\begin{gathered}
g\left(x_{1}, y_{1}\right)=\sum_{u=1}^{P} \sum_{v=1}^{Q} a_{u} \cdot b_{v} \cdot G(u, v) \cdot \cos \frac{\pi\left(2 x_{1}-1\right)(u-1)}{2 \cdot P} \cdot \cos \frac{\pi\left(2 y_{1}-1\right)(v-1)}{2 \cdot Q} \\
g\left(x_{2}, y_{2}\right)=\sum_{u=1}^{P} \sum_{v=1}^{Q} a_{u} \cdot b_{v} \cdot G(u, v) \cdot \cos \frac{\pi\left(2 x_{2}-1\right)(u-1)}{2 \cdot P} \cdot \cos \frac{\pi\left(2 y_{2}-1\right)(v-1)}{2 \cdot Q} \\
\vdots \\
\frac{g\left(x_{M}, y_{M}\right)}{\text { Image pixel }}=\sum_{u=1}^{P} \sum_{v=1}^{Q} a_{u} \cdot b_{v} \cdot \underline{\text { DCT coefficient }} \quad
\end{gathered}
$$

Our goal is to solve all DCT coefficients from these linear equations

Compressed Sensing

■ Re-write the linear equation in matrix form

DCT coefficients

Original image

Result in an under-determined linear equation, since we have less sampling locations than unknown DCT coefficients

Compressed Sensing

- Additional information is required to uniquely solve underdetermined linear equation

Original image

Explore sparsity to find unique, deterministic solution from under-determined equation

Compressed Sensing

$■$ We know that α is sparse - but we do not know the exact location of zeros

- Find the sparse solution α (i.e., DCT coefficients) for $\mathrm{A} \alpha=\mathrm{B}$
, Apply inverse DCT transform to recover full image

$$
\begin{aligned}
& {\left[\begin{array}{c}
\times \\
\times \\
\times
\end{array}\right]=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
\times \\
\times \\
0 \\
0
\end{array}\right] } \square \\
& \alpha \text { (Sparse) }
\end{aligned}
$$

Compressed Sensing

- Compressed sensing is a general technique that is applicable to many other practical problems
\checkmark Image re-construction is one of the application examples

■ More details on compressed sensing can be found at

Candes, "Compressive sampling," International Congress of Mathematicians, 2006 Donoho, "Compressed sensing," IEEE Trans. Information Theory, 2006.

Orthogonal Matching Pursuit (OMP)

■ Another way to find sparse solution is L_{0}-norm regularization

$$
\begin{array}{l|l}
\min _{\alpha} & \|A \alpha-B\|_{2}^{2} \quad \text { (VERY difficult to solve) } \\
\text { S.T. } & \|\alpha\|_{0} \leq \lambda
\end{array}
$$

Number of non-zeros in α

■ Efficient numerical algorithm exists to find an approximate (i.e., sub-optimal) solution
v E.g., orthogonal matching pursuit

Orthogonal Matching Pursuit (OMP)

■ Goal:
v Identify a subset of DCT coefficients that are non-zero

■ Approach:
\checkmark Find important DCT coefficients by checking the inner product between A_{i} and B

- Assume that each A_{i} is normalized (i.e., has unit length)

$$
\begin{array}{r}
{\left[\begin{array}{c}
\times \\
\times \\
\times
\end{array}\right]=\left[\begin{array}{lllll}
A_{1} & A_{2} & A_{3} & A_{4} & \cdots
\end{array}\right] \cdot\left[\begin{array}{c}
\times \\
\times \\
\times \\
\times \\
\times \\
\times
\end{array}\right]} \\
\underset{\alpha}{ } \quad \begin{array}{l}
\left\langle A_{i}, B\right\rangle=A_{i}^{T} B \\
\text { Inner product }
\end{array} \\
\hline
\end{array}
$$

Orthogonal Matching Pursuit (OMP)

■ Inner product $\left\langle A_{i}, B\right\rangle$ implies the importance of A_{i} when approximating B

■ 2-D example

$$
\begin{gathered}
\alpha_{1} \cdot A_{1}+\alpha_{2} \cdot A_{2} \approx B \\
\left\langle A_{1}, B\right\rangle \neq 0 \\
\left\langle A_{2}, B\right\rangle=0
\end{gathered}
$$

A_{1} is important to approximate B

Orthogonal Matching Pursuit (OMP)

■ 2-D example

$$
\alpha_{1} \cdot A_{1}+\alpha_{2} \cdot A_{2} \approx B
$$

v Step 1: Calculate $<\mathrm{A}_{1}, \mathrm{~B}>$ and $<\mathrm{A}_{2}$, $\mathrm{B}>$
\checkmark Step 2: Select A_{i} that corresponds to the largest inner product magnitude (i.e., A_{1} in this example)
\checkmark Step 3: Solve the coefficient α_{1} by least-squares fitting

$$
\min _{\alpha_{1}}\left\|\alpha_{1} \cdot A_{1}-B\right\|_{2}^{2}
$$

Vtep 4: Set $\alpha_{2}=0$ (B is independent of A_{2} in this example)

Orthogonal Matching Pursuit (OMP)

■ 2-D example

$$
\alpha_{1} \cdot A_{1}+\alpha_{2} \cdot A_{2} \approx B
$$

$\checkmark \mathrm{A}_{1}$ and A_{2} are not orthogonal
V B is not orthogonal to A_{1} or A_{2}

Orthogonal Matching Pursuit (OMP)

■ 2-D example

$$
\alpha_{1} \cdot A_{1}+\alpha_{2} \cdot A_{2} \approx B
$$

v Step 1: Calculate $<\mathrm{A}_{1}, \mathrm{~B}>$ and $<\mathrm{A}_{2}$, $\mathrm{B}>$
\checkmark Step 2: Select A_{i} that corresponds to the largest inner product magnitude (i.e., A_{1} in this example)
v Step 3: Solve the coefficient α_{1} by least-squares fitting

$$
\min _{\alpha_{1}}\left\|\alpha_{1} \cdot A_{1}-B\right\|_{2}^{2}
$$

Orthogonal Matching Pursuit (OMP)

■ 2-D example

$$
\alpha_{1} \cdot A_{1}+\alpha_{2} \cdot A_{2} \approx B
$$

v Step 4: Calculate the residue

$$
F=B-\alpha_{1} \cdot A_{1} \quad\left(F \text { is orthogonal to } A_{1}\right)
$$

v Step 5: Calculate $<A_{1}$, $\mathrm{F}>$ and $<\mathrm{A}_{2}$, F>
v Step 6: Select A_{i} that corresponds to the largest inner product magnitude (i.e., A_{2} in this example)

Orthogonal Matching Pursuit (OMP)

■ 2-D example

$$
\alpha_{1} \cdot A_{1}+\alpha_{2} \cdot A_{2} \approx B
$$

- Step 7: Solve the coefficients α_{1} and α_{2} by least-squares fitting

$$
\begin{gathered}
\min _{\alpha_{1}, \alpha_{2}}\left\|\alpha_{1} \cdot A_{1}+\alpha_{2} \cdot A_{2}-B\right\|_{2}^{2} \\
\left(\alpha_{1} \text { is re-calculated }\right)
\end{gathered}
$$

Orthogonal Matching Pursuit (OMP)

$■$ General OMP algorithm to solve underdetermined linear equation

$$
\begin{array}{ll}
\min _{\alpha} & \|A \alpha-B\|_{2}^{2} \\
\text { S.T. } & \|\alpha\|_{0} \leq \lambda
\end{array}
$$

, Step 1: Set F $=B, \Omega=\{ \}$ and $p=1$
\checkmark Step 2: Calculate the inner product values $\left.\theta_{i}=<A_{i}, F\right\rangle$
v Step 3: Identify the index s for which $\left|\theta_{\mathrm{s}}\right|$ takes the largest value

- Step 4: Update Ω by $\Omega=\Omega \cup\{\mathrm{s}\}$
v Step 5: Approximate B by the linear combination of $\left\{A_{i} ; i \in \Omega\right\}$

$$
\min _{\alpha_{i}, i \in \Omega}\left\|\sum_{i \in \Omega} \alpha_{i} \cdot A_{i}-B\right\|_{2}^{2}
$$

v Step 6: Update F

$$
F=B-\sum_{i \in \Omega} \alpha_{i} \cdot A_{i}
$$

- Step 7: If $\mathrm{p}<\lambda, \mathrm{p}=\mathrm{p}+1$ and go to Step 2. Otherwise, stop.

$$
\alpha_{i}=0 \quad(i \notin \Omega)
$$

Orthogonal Matching Pursuit (OMP)

$$
\begin{array}{ll}
\min _{\alpha} & \|A \alpha-B\|_{2}^{2} \\
\text { S.T. } & \|\alpha\|_{0} \leq \lambda
\end{array}
$$

■ Orthogonal matching pursuit is a heuristic algorithm to solve the L_{0}-norm regularization problem
\square A number of other heuristic algorithms exist to solve underdetermined linear equation
\checkmark More details can be found in compressed sensing papers

Summary

■ Compressed sensing
v Orthogonal matching pursuit (OMP)

