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Overview 

 Compressed Sensing 
 Orthogonal matching pursuit (OMP) 
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L1-Norm Regularization 

 L1-norm regularization is often used to find sparse solution of a 
linear equation 
 
 
 
 

 L1-norm regularization has been applied to a large number of 
practical problems 
 In this lecture, we will focus on the compressed sensing problem 

for image processing 
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Compressed Sensing 

 Our focus: image re-construction 
 Sample an image at a small number of spatial locations 
 Recover full image by a numerical algorithm 

Original image Recovered image 
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Compressed Sensing 

 A 2-D image can be mapped to frequency domain by discrete 
cosine transform (DCT) 

Original image 

( ) ( ) ( )( ) ( )( )∑∑
= = ⋅

−−
⋅

⋅
−−

⋅⋅⋅=
P

x

Q

y
vu Q

vy
P

uxyxgbavuG
1 1 2

112cos
2

112cos,, ππ

( )
( )





≤≤
=

=
PuP

uP
au 22

11

( )
( )





≤≤
=

=
QvQ

vQ
bv 22

11

Image pixel DCT coefficient 

{ }Pux ,,2,1, ∈

{ }Qvy ,,2,1, ∈



Slide 6   

( ) ( ) ( )( ) ( )( )∑∑
= = ⋅

−−
⋅

⋅
−−

⋅⋅⋅=
P

u

Q

v
vu Q

vy
P

uxvuGbayxg
1 1 2

112cos
2

112cos,, ππ

Compressed Sensing 

 A 2-D image can be uniquely determined by inverse discrete 
cosine transform (IDCT), if all DCT coefficients are known 

Original image 

DCT coefficient Image pixel 
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Compressed Sensing 

 Sample a 2-D image at a number of (say, M) spatial locations 
 Result in a set of (i.e., M) linear equations 
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Our goal is to solve all DCT coefficients from these 
linear equations 

DCT coefficient Image pixel 
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Compressed Sensing 

 Re-write the linear equation in matrix form 

Original image 
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Sampling data 

IDCT transform 

Result in an under-determined linear equation, since we have less 
sampling locations than unknown DCT coefficients 
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Compressed Sensing 

 Additional information is required to uniquely solve under-
determined linear equation 
 

Explore sparsity to find unique, deterministic solution 
from under-determined equation 

Original image 

DCT 

fx 

fy Few non-zero DCT 
components 
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Compressed Sensing 

 We know that α is sparse – but we do not know the exact 
location of zeros 
 Find the sparse solution α (i.e., DCT coefficients) for Aα = B 
 Apply inverse DCT transform to recover full image 
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Compressed Sensing 

 Compressed sensing is a general technique that is applicable 
to many other practical problems 
 Image re-construction is one of the application examples 

 
 More details on compressed sensing can be found at 

Candes, “Compressive sampling,” International Congress of Mathematicians, 2006 
Donoho, “Compressed sensing,” IEEE Trans. Information Theory, 2006. 
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Orthogonal Matching Pursuit (OMP) 

 Another way to find sparse solution is L0-norm regularization 
 
 
 
 
 

 Efficient numerical algorithm exists to find an approximate 
(i.e., sub-optimal) solution 
 E.g., orthogonal matching pursuit 
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(VERY difficult to solve) 

Number of non-zeros in α 
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Orthogonal Matching Pursuit (OMP) 

 Goal: 
 Identify a subset of DCT coefficients that are non-zero 

 
 Approach: 

 Find important DCT coefficients by checking the inner product 
between Ai and B 

 Assume that each Ai is normalized (i.e., has unit length) 
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Orthogonal Matching Pursuit (OMP) 

 Inner product <Ai, B> implies the importance of Ai when 
approximating B 
 

 2-D example 
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Orthogonal Matching Pursuit (OMP) 

 2-D example 
 
 

 Step 1: Calculate <A1, B> and <A2, B> 
 Step 2: Select Ai that corresponds to the largest inner product 

magnitude (i.e., A1 in this example) 
 Step 3: Solve the coefficient α1 by least-squares fitting 

 
 

 Step 4: Set α2 = 0 (B is independent of A2 in this example) 

BAA ≈⋅+⋅ 2211 αα
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Orthogonal Matching Pursuit (OMP) 

 2-D example 
 
 

 A1 and A2 are not orthogonal 
 B is not orthogonal to A1 or A2 

BAA ≈⋅+⋅ 2211 αα

A1 

A2 

B 
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Orthogonal Matching Pursuit (OMP) 

 2-D example 
 
 

 Step 1: Calculate <A1, B> and <A2, B> 
 Step 2: Select Ai that corresponds to the largest inner product 

magnitude (i.e., A1 in this example) 
 Step 3: Solve the coefficient α1 by least-squares fitting 
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Orthogonal Matching Pursuit (OMP) 

 2-D example 
 
 

 Step 4: Calculate the residue 
 
 

 Step 5: Calculate <A1, F> and <A2, F> 
 Step 6: Select Ai that corresponds to the largest inner product 

magnitude (i.e., A2 in this example) 

11 ABF ⋅−= α (F is orthogonal to A1) 

BAA ≈⋅+⋅ 2211 αα

F = B – α1A1  
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Orthogonal Matching Pursuit (OMP) 

 2-D example 
 
 

 Step 7: Solve the coefficients α1 and α2 by least-squares fitting 
2

22211, 21

min BAA −⋅+⋅ αα
αα

(α1 is re-calculated) 

BAA ≈⋅+⋅ 2211 αα
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Orthogonal Matching Pursuit (OMP) 

 General OMP algorithm to solve underdetermined linear equation 
 
 
 Step 1: Set F = B, Ω = { } and p = 1 
 Step 2: Calculate the inner product values θi = <Ai, F> 
 Step 3: Identify the index s for which |θs| takes the largest value 
 Step 4: Update Ω by Ω = Ω ∪ {s} 
 Step 5: Approximate B by the linear combination of {Ai; i ∈ Ω} 

 
 

 Step 6: Update F 
 
 

 Step 7: If p < λ, p = p+1 and go to Step 2. Otherwise, stop. 
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Orthogonal Matching Pursuit (OMP) 

 
 
 
 

 Orthogonal matching pursuit is a heuristic algorithm to solve 
the L0-norm regularization problem 
 

 A number of other heuristic algorithms exist to solve under-
determined linear equation 
 More details can be found in compressed sensing papers 
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Summary 

 Compressed sensing 
 Orthogonal matching pursuit (OMP) 
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