

18-660: Numerical Methods for Engineering Design and Optimization

Xin Li Department of ECE Carnegie Mellon University Pittsburgh, PA 15213

Overview

Linear Regression

- Over-fitting
- Regularization
- L₁-norm regularization

Least-Squares Regression

Linear regression minimizes mean squared error for a set of sampling points

In practice, M must be substantially larger than N (i.e., M >> N) to avoid over-fitting

Approximate sinusoidal function by polynomial model

$$f(x) = \sin(2\pi \cdot x) \approx \sum_{k=0}^{K} \alpha_k x^k \quad 0 \le x \le 1$$

First-order polynomial model (K = 1)

$$f(x) = \sin(2\pi \cdot x) \approx \sum_{k=0}^{K=1} \alpha_k x^k \quad 0 \le x \le 1$$

3rd-order polynomial model (K = 3)

$$f(x) = \sin(2\pi \cdot x) \approx \sum_{k=0}^{K=3} \alpha_k x^k \quad 0 \le x \le 1$$

9rd-order polynomial model (K = 9)

$$f(x) = \sin(2\pi \cdot x) \approx \sum_{k=0}^{K=9} \alpha_k x^k \quad 0 \le x \le 1$$

- Model order vs. model error
 - Increasing model complexity does not necessarily increase model accuracy

Over-Fitting

Increasing the number of samples helps to reduce over-fitting

$$f(x) = \sin(2\pi \cdot x) \approx \sum_{k=0}^{K=9} \alpha_k x^k \quad 0 \le x \le 1$$

In practice, additional sampling points may be difficult and/or expensive to collect

E.g., a single sampling point may be collected by a physical experiment that takes several months to finish

Regularization is a useful technique to minimize over-fitting

- What is regularization?
- How does it work?

• Our previous example:

$$f(x) = \sin(2\pi \cdot x) \approx \sum_{k=0}^{K} \alpha_k x^k \quad 0 \le x \le 1$$

	K = 1	K = 3	K = 9
α0	0.48	-0.29	-0.13
α1	-0.96	10.58	116.89
α2		-29.08	-2796.20
α3		18.84	26454.00
α4			-127610.00
α5			350590.00
α6			-572280.00
α7			549450.00
α8			-286530.00
α9			62610.00

Coefficients become extremely large due to over-fitting

Key idea: large coefficient value should be penalized

A determines how much $\|\alpha\|_2$ should be penalized

Regularization can be re-written as a least-squares problem

$$\left\|A\alpha - B\right\|_{2}^{2} + \lambda \cdot \left\|\alpha\right\|_{2}^{2} = \left\|A\alpha - B\right\|_{2}^{2} + \lambda \cdot \alpha_{1}^{2} + \lambda \cdot \alpha_{2}^{2} + \cdots$$

Solve least-squares solution α

$$\min_{\alpha} \|A \cdot \alpha - B\|_2^2 + \lambda \cdot \|\alpha\|_2^2$$

Regularization result depends on λ

 $■ \lambda = 0 → ordinary least-squares regression (over-fitting)$

 $\checkmark \lambda = inf \rightarrow \alpha = 0$ (over-penalized)

• Optimal λ value is case-dependent

- Require a smart algorithm to automatically determine λ to achieve minimal modeling error
- Question: how to estimate modeling error by using a set of training samples?

Cross Validation

- \mathbf{I} $\mathbf{\lambda}$ is often determined by cross validation
 - Calculate coefficients from training set
 - Estimate error from testing set

Example: 4-fold cross validation

 $Error(\lambda) = [\varepsilon_1(\lambda) + \varepsilon_2(\lambda) + \varepsilon_3(\lambda) + \varepsilon_4(\lambda)]/4$

Cross Validation

Example: 4-fold cross validation

- **¬** Solve the regularization problem with different λ values
- **¬** Estimate error $Error(\lambda)$ for each λ
- **¬** Find the optimal λ to minimize Error(λ)

$$\min_{\alpha} \|A \cdot \alpha - B\|_{2}^{2} + \lambda \cdot \|\alpha\|_{2}^{2}$$

Estimate error

 $\min_{\lambda} \quad Error(\lambda) = \left[\varepsilon_1(\lambda) + \varepsilon_2(\lambda) + \varepsilon_3(\lambda) + \varepsilon_4(\lambda)\right]/4$

A Simple Regularization Example

• 9-th order polynomial model fitted from 10 sampling points $f(x) = \sin(2\pi \cdot x) \approx \sum_{k=0}^{K=9} \alpha_k x^k \quad 0 \le x \le 1 \qquad \min_{\alpha} \|A \cdot \alpha - B\|_2^2 + \lambda \cdot \|\alpha\|_2^2$

A Simple Regularization Example

Several other possible forms of regularization

$$\min_{\alpha} \quad \left\| A \cdot \alpha - B \right\|_{2}^{2} + \lambda \cdot \left\| \alpha \right\|_{2}^{2}$$

$$\min_{\alpha} \|A \cdot \alpha - B\|_{2}^{2} + \lambda \cdot \|\alpha\|_{1}^{2}$$

$$\min_{\alpha} \quad \left\| A \alpha - B \right\|_{2}^{2}$$

S.T.
$$\left\| \alpha \right\|_{1} \le \lambda$$

¬ For a vector $\alpha \in \mathbb{R}^N$, $||\alpha||_1$ is defined as:

$$\left\|\alpha\right\|_1 = \sum_{i=1}^N \left|\alpha_i\right|$$

L₁-Norm Regularization

L₁-norm regularization is often used to find sparse solution of a linear equation

$$\min_{\alpha} \|A\alpha - B\|_{2}^{2}$$

S.T. $\|\alpha\|_{1} \le \lambda$

 L_1 -norm regularization yields sparse solution if λ is sufficiently small

L₁-Norm Regularization

L₁-norm regularization can be solved by convex programming

$$\min_{\alpha} \quad \left\| A \alpha - B \right\|_{2}^{2}$$

S.T.
$$\left\| \alpha \right\|_{1} \le \lambda$$

$$\min_{\substack{\alpha,t\\}} \|A\alpha - B\|_2^2$$

S.T. $t_1 + \cdots + t_N \leq \lambda$
 $-t_n \leq \alpha_n \leq t_n$
 $(n = 1, 2, \cdots, N)$

(Convex optimization)

- Convex quadratic cost function
- Linear constraints

L₁-norm regularization has been applied to a large number of practical problems, e.g., image processing

Image Processing Example

- Image re-construction (compressed sensing)
 - Sample an image at a small number of locations
 - Recover full image by a numerical algorithm
 - More details in next lecture...

Original image

Recovered image

Summary

Linear regression

- Over-fitting
- Regularization
- L₁-norm regularization