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Overview 

 Linear Regression 
 Over-fitting 
 Regularization 
 L1-norm regularization 
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Least-Squares Regression 

 Linear regression minimizes mean squared error for a set of 
sampling points 
 
 
 
 
 
 
 
 

 In practice, M must be substantially larger than N (i.e., M >> N) 
to avoid over-fitting 
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A Simple Over-Fitting Example 

 Approximate sinusoidal function by polynomial model 
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w/ noise 

Sin function 
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A Simple Over-Fitting Example 

 First-order polynomial model (K = 1) 
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Sin function 

Polynomial 

Sampling points 
w/ noise 
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A Simple Over-Fitting Example 

 3rd-order polynomial model (K = 3) 
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A Simple Over-Fitting Example 

 9rd-order polynomial model (K = 9) 
 

Sin function 
Polynomial 

Sampling points 
w/ noise 
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A Simple Over-Fitting Example 

 Model order vs. model error 
 Increasing model complexity does not necessarily increase 

model accuracy 
Model error increases 

due to over-fitting 
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Over-Fitting 

 Increasing the number of samples helps to reduce over-fitting 
 

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

x

f(x
)

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

x
f(x

)

9-th order model fitted from 
10 sampling points 

9-th order model fitted from 
100 sampling points 

( ) ( ) 102sin
9

0
≤≤≈⋅= ∑

=

=

xxxxf
K

k

k
kαπ



Slide 10   

Regularization 

 In practice, additional sampling points may be difficult and/or 
expensive to collect 
 E.g., a single sampling point may be collected by a physical 

experiment that takes several months to finish 

 
 Regularization is a useful technique to minimize over-fitting 

 What is regularization? 
 How does it work? 
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K = 1 K = 3 K = 9
α0 0.48 -0.29 -0.13
α1 -0.96 10.58 116.89
α2 -29.08 -2796.20
α3 18.84 26454.00
α4 -127610.00
α5 350590.00
α6 -572280.00
α7 549450.00
α8 -286530.00
α9 62610.00

Regularization 

 Our previous example: 
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Coefficients become extremely large due to over-fitting 
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Regularization 

 Key idea: large coefficient value should be penalized 
 
 
 
 
 
 
 
 
 
 

 λ determines how much ||α||2 should be penalized 
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Regularization 

 Regularization can be re-written as a least-squares problem 
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Regularization 

 
 

 Regularization result depends on λ 
 λ = 0 → ordinary least-squares regression (over-fitting) 
 λ = inf → α = 0 (over-penalized) 

 
 Optimal λ value is case-dependent 

 Require a smart algorithm to automatically determine λ to 
achieve minimal modeling error 

 Question: how to estimate modeling error by using a set of 
training samples? 
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Cross Validation 

 λ is often determined by cross validation 
 Calculate coefficients from training set 
 Estimate error from testing set 

 
 Example: 4-fold cross validation 

Run 1 
Run 2 
Run 3 
Run 4 

4 groups of data 

Coefficient 
fitting 

Error 
estimation ( )λε1

( )λε 2

( )λε3

( )λε 4

( ) ( ) ( ) ( ) ( )[ ] 44321 λελελελελ +++=Error
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Cross Validation 

 Example: 4-fold cross validation 
 Solve the regularization problem with different λ values 
 Estimate error Error(λ) for each λ 
 Find the optimal λ to minimize Error(λ) 
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A Simple Regularization Example 

 9-th order polynomial model fitted from 10 sampling points 
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λ = 0 → ordinary least-squares 
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A Simple Regularization Example 

 9-th order polynomial model fitted from 10 sampling points 
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Regularization 

 Several other possible forms of regularization 
 
 
 
 
 
 
 
 
 
 

 For a vector α ∈ RN, ||α||1 is defined as: 
 

λα
α

α

≤

−

1

2

2

S.T.
min BA

∑
=

=
N

i
i

1
1

αα

2

2

2

2
min αλα

α
⋅+−⋅ BA

2

1

2

2
min αλα

α
⋅+−⋅ BA



Slide 20   

L1-Norm Regularization 

 L1-norm regularization is often used to find sparse solution of 
a linear equation 
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L1-Norm Regularization 

 L1-norm regularization can be solved by convex programming 
 
 
 
 
 
 
 

 Convex quadratic cost function 
 Linear constraints 
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(Convex optimization) 

L1-norm regularization has been applied to a large number of 
practical problems, e.g., image processing 
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Image Processing Example 

 Image re-construction (compressed sensing) 
 Sample an image at a small number of locations 
 Recover full image by a numerical algorithm 
 More details in next lecture… 

Original image Recovered image 
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Summary 

 Linear regression 
 Over-fitting 
 Regularization 
 L1-norm regularization 
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