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Overview 

 Convex Analysis 
 Convex function 
 Convex set 
 Convex optimization 
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Ordinary Least-Squares Regression 

 Solve over-determined linear equation by optimization 
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Unconstrained Nonlinear Programming 

 Nonlinear cost function without constraints 
 
 

 General nonlinear optimization is difficult to solve 
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Local optimum 
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Unconstrained Quadratic Programming 

 
 

 However, ordinary least-squares regression is different from 
general nonlinear programming 
 

 Optimization cost is a quadratic function of X and it is always 
non-negative for any given X 
 This is a unique property that enables us to solve least-

squares regression efficiently 
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Positive Semi-Definite 

 If a quadratic function XTAQX is always non-negative, the 
quadratic coefficient matrix AQ is positive semi-definite 
 Assume that AQ is symmetric so that its eigenvalues are real 
 Any asymmetric AQ can be converted to a symmetric one 
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Positive Semi-Definite 

 Simple example: 
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Positive Semi-Definite 

 AQ is positive semi-definite if and only if all eigenvalues of AQ 
are non-negative (necessary and sufficient condition) 
 

 Eigenvalue decomposition 
 
 
 
 
 
 

 AQ is symmetric → all eigenvalues are real 
 AQ is symmetric → all eigenvectors are real and orthogonal 
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“Normalized” 
eigenvector: ||Vi||2 = 1 

Eigenvalue 
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Positive Semi-Definite 

 Eigenvalue decomposition 
 
 
 
 
 
 

 All eigenvectors are orthogonal 
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Positive Semi-Definite 

 If one of the eigenvalues of AQ is negative 
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Positive Semi-Definite 

 If one of the eigenvalues of AQ is negative 
 

Select VTX = [0 0 ... 0 Δ]T 
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Positive Semi-Definite 

 If a quadratic function XTAQX + BQ
TX + CQ is always non-

negative (for any X), all eigenvalues of AQ are non-negative 
 I.e., AQ is positive semi-definite 
 Why? (You can prove this conclusion by following the steps of 

eigenvalue decomposition) 

 
 The quadratic coefficient matrix for the least-squared error 

err(X) = ||AX-B||22 is positive semi-definite 
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Positive Semi-Definite 

 The reverse statement is NOT true 
 

 Even if AQ is positive semi-definite, f(X) = XTAQX + BQ
TX + CQ 

can be either positive or negative 

( ) 12 −= xxf

( ) 010 <−=f
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Convex Function 

 Positive semi-definite quadratic functions have special 
properties that can be utilized by nonlinear optimization 
 

 A simple one-dimensional example f(x) = x2 

x 

x2 

The function f(X) = x2 is convex 



Slide 15   

Convex Function 

 f(X) is convex, if for all vectors X1, X2 and 0 ≤ α ≤ 1, we have 

( )[ ] ( ) ( ) ( )2121 11 XfXfXXf ⋅−+⋅≤⋅−+⋅ αααα

x 

f(x) 

f(x1) 

For any given interval [x1, x2], 
chord from f(x1) to f(x2) is 
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Convex Function 

 Second-order sufficient condition for convexity 
 Not a necessary condition – convex function might not be 

smooth, and Hessian matrix might not exist 
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Convex Function 

 To guarantee convexity, Hessian matrix must be positive 
semi-definite for ALL X 

x 

f(x) 

( ) 02 >∇ xf

( ) 02 <∇ xf

f(x) is NOT convex! 
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Convex Function 

 A quadratic function f(X) = XTAQX + BQ
TX + CQ is convex if and 

only if AQ is positive semi-definite 
( ) QAXf 22 =∇

f(x, y) = x2 + y2 

Constant 
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Convex Function 

 Several popular examples of convex functions 
 

 One dimensional convex functions 
 Linear:  f(x) = bx + c 
 Exponential: f(x) = eax 

 Power:  f(x) = xa (a < 0 or a > 1, x > 0) 
 

 N-dimensional convex functions 
 Linear:  f(X) = BTX + C 
 L2-norm:  f(X) = ||X||2 

 Max:  f(X) = max(x1,x2,...,xN) 
 Log-sum-exp: f(X) = log(ex1 + ex2 + ... + exN) 
 Log-determinant: f(X) = -log[det(X)] (X is positive definite) 
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Convex Function 

 Minimizing a convex function is much easier than a general 
nonlinear programming 
 Convex functions do not contain local minima 

Local minimum 
Global minimum Global minimum 

Convex function Non-convex function 
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Constrained Nonlinear Optimization 

 The least-squares problem attempts to minimize a convex 
cost function without any constraints 
 

 Many practical optimization problems contain both a cost 
function and a number of constraints 
 E.g., minimax optimization for regression 
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Constrained Nonlinear Optimization 

 A general nonlinear programming problem has the form of: 
 
 
 
 
 

 Equality constraints can be expressed in this general form  
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Constrained Nonlinear Optimization 

 A point X is feasible if it satisfies all constraints: 
 
 
 
 

 The set of all feasible points is called the feasible set, or the 
constraint set 
 

 An optimization is said to be feasible, if the corresponding 
feasible set is non-empty 
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Constrained Nonlinear Optimization 

 Feasible set plays an important role in nonlinear optimization 
 

 Even if the cost function is convex, nonlinear optimization 
can still be difficult given a “bad” feasible set 

Good feasible set 
(convex) 

Bad feasible set 
(non-convex) 

VERY bad feasible set 
(discontinuous) 
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Convex Set 

 A set D is convex, if for all X1, X2 ∈ D and 0 ≤ α ≤ 1, we have 
 ( ) DXX ∈⋅−+⋅ 21 1 αα

Contains any line segment between 
two points in the set 

Convex Non-convex 
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Convex Set 

 Several popular examples of convex sets 
 Hyperplane: {X| BTX = C} 
 Polytope:  {X| BTX ≤ C} 
 Ball:  ||X||2 ≤ C 

 
 Positive semi-definite matrices (a non-trivial example): 

 
 

 If X1 and X2 are positive semi-definite, their positive 
combination is also positive semi-definite 

{ }0,, ==∈ ×
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Positive coefficients 
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Convex Set 

 Given a function f(X), the α-sublevel set is defined as: 
 
 

 If f(X) is convex, its sublevel sets are convex 

( ){ }α≤XfX
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f(x) 
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Convex sublevel set 
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Convex Set 

 Set convexity is preserved under intersection 
 If D1 and D2 are convex then D1 ∩ D2 is convex 

Intersection is convex 
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Convex Optimization 

 
 
 
 
 

 If all gi(X)’s are convex, the constraint set is convex 
 Constraint set is the intersection of all convex 0-sublevel sets 

 
 The minimization of a convex cost function over a convex 

constraint set is called convex optimization 
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Convex Optimization 

 The following optimizations are NOT convex, even if f(X) and 
g(X) are both convex 
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Convex Optimization 

 Linear programming is a special case of convex optimization 
 

 Most convex optimization with smooth cost function and 
constraints can be efficiently and robustly solved 
 Decide if the optimization is feasible or infeasible 
 If feasible, provide the optimal solution 

 
 Several good convex solvers 

 MOSEK (www.mosek.com) 
 CVX (www.stanford.edu/~boyd/cvx/) 
 More details on convex solver in future lectures... 
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Summary 

 Convex analysis 
 Convex function 
 Convex set 
 Convex optimization 
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