CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

■ Convex Analysis
v Convex function
v Convex set

- Convex optimization

Ordinary Least-Squares Regression

■ Solve over-determined linear equation by optimization

N coefficients

$$
\min _{X}\|A \cdot X-B\|_{2}^{2}
$$

Unconstrained Nonlinear Programming

■ Nonlinear cost function without constraints

$$
\min _{X}\|A \cdot X-B\|_{2}^{2}
$$

■ General nonlinear optimization is difficult to solve

Unconstrained Quadratic Programming

$$
\min _{X}\|A \cdot X-B\|_{2}^{2}
$$

■ However, ordinary least-squares regression is different from general nonlinear programming

■ Optimization cost is a quadratic function of X and it is always non-negative for any given X

- This is a unique property that enables us to solve leastsquares regression efficiently

Positive Semi-Definite

- If a quadratic function $X^{\top} A_{Q} X$ is always non-negative, the quadratic coefficient matrix A_{Q} is positive semi-definite
\checkmark Assume that A_{Q} is symmetric so that its eigenvalues are real
\checkmark Any asymmetric A_{Q} can be converted to a symmetric one

Positive Semi-Definite

■ Simple example:

$$
\begin{aligned}
& A_{Q}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& X^{T} A_{Q} X=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1} x_{2}
\end{aligned}
$$

$$
\frac{1}{2}\left(A_{Q}+A_{Q}^{T}\right)=\left[\begin{array}{cc}
0 & 0.5 \\
0.5 & 0
\end{array}\right]
$$

$$
\frac{1}{2} X^{T}\left(A_{Q}+A_{Q}^{T}\right) X=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & 0.5 \\
0.5 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1} x_{2}
$$

Positive Semi-Definite

- A_{Q} is positive semi-definite if and only if all eigenvalues of A_{Q} are non-negative (necessary and sufficient condition)
- Eigenvalue decomposition

> "Normalized" eigenvector: $\left\|\mathrm{V}_{\mathrm{i}}\right\|_{2}=1$
$\checkmark A_{Q}$ is symmetric \rightarrow all eigenvalues are real
, A_{Q} is symmetric \rightarrow all eigenvectors are real and orthogonal

Positive Semi-Definite

■ Eigenvalue decomposition

$$
\begin{aligned}
A_{Q} \cdot V_{i}=V_{i} \cdot \lambda_{i} \quad V= & {\left[\begin{array}{lll}
V_{1} & V_{2} & \cdots
\end{array}\right] \quad \Sigma=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \lambda_{2} & \\
& & \ddots
\end{array}\right] } \\
& \\
& A_{Q} \cdot V=V \cdot \Sigma
\end{aligned}
$$

v All eigenvectors are orthogonal Identity matrix

$$
\begin{gathered}
V^{T} V=I \\
A_{Q}=V \cdot \Sigma \cdot V^{-1}=V \cdot \Sigma \cdot V^{T}
\end{gathered}
$$

Positive Semi-Definite

- If one of the eigenvalues of A_{Q} is negative

$$
\begin{gathered}
A_{Q}=V \cdot \Sigma \cdot V^{T} \text { where } V^{T} V=I \\
\square \\
X^{T} A_{Q} X=\left(V^{T} X\right)^{T} \cdot \Sigma \cdot\left(V^{T} X\right)=\left(V^{T} X\right)^{T} \cdot\left[\begin{array}{llll}
\times & & & \\
& \times & & \\
& & \ddots & \\
& & & -\varepsilon
\end{array}\right] \cdot\left(V^{T} X\right)
\end{gathered}
$$

Positive Semi-Definite

- If one of the eigenvalues of A_{Q} is negative

$$
\begin{gathered}
\left(V^{T} X\right)^{T} \cdot\left[\begin{array}{lllll}
\times & & & & \\
& \times & & \\
& & \ddots & \\
& & & & \\
& \\
& \text { Select } V^{\top} X=\left[\begin{array}{lll}
0 & 0 & \ldots
\end{array}\right] \cdot\left(V^{T} X\right)
\end{array}\right]^{\top} \\
{\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
\Delta
\end{array}\right]^{T}\left[\begin{array}{llll}
\times & & & \\
& \times & & \\
& & \ddots & \\
& & & -\varepsilon
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
\Delta
\end{array}\right]=-\varepsilon \cdot \Delta^{2}<0}
\end{gathered}
$$

$X^{\top} A_{Q} X$ is negative

Positive Semi-Definite

- If a quadratic function $X^{\top} A_{Q} X+B_{Q}{ }^{\top} X+C_{Q}$ is always nonnegative (for any X), all eigenvalues of A_{Q} are non-negative
\checkmark l.e., A_{Q} is positive semi-definite
vhy? (You can prove this conclusion by following the steps of eigenvalue decomposition)
\square The quadratic coefficient matrix for the least-squared error $\operatorname{err}(X)=\|A X-B\|_{2}{ }^{2}$ is positive semi-definite

Positive Semi-Definite

■ The reverse statement is NOT true
\square Even if A_{Q} is positive semi-definite, $f(X)=X^{\top} A_{Q} X+B_{Q}{ }^{\top} X+C_{Q}$ can be either positive or negative

$$
\begin{gathered}
f(x)=x^{2}-1 \\
f(0)=-1<0
\end{gathered}
$$

Convex Function

■ Positive semi-definite quadratic functions have special properties that can be utilized by nonlinear optimization

- A simple one-dimensional example $f(x)=x^{2}$

The function $f(X)=x^{2}$ is convex

Convex Function

$\square f(X)$ is convex, if for all vectors X_{1}, X_{2} and $0 \leq \alpha \leq 1$, we have

$$
f\left[\alpha \cdot X_{1}+(1-\alpha) \cdot X_{2}\right] \leq \alpha \cdot f\left(X_{1}\right)+(1-\alpha) \cdot f\left(X_{2}\right)
$$

Convex Function

■ Second-order sufficient condition for convexity
v Not a necessary condition - convex function might not be smooth, and Hessian matrix might not exist

$$
\nabla^{2} f(X)=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots \\
\vdots & \vdots &
\end{array}\right] \succ=0
$$

Hessian matrix is positive semi-definite for ALL X (Hessian matrix depends on X)

Convex Function

- To guarantee convexity, Hessian matrix must be positive semi-definite for ALL X

Convex Function

- A quadratic function $f(X)=X^{\top} A_{Q} X+B_{Q}{ }^{\top} X+C_{Q}$ is convex if and only if A_{Q} is positive semi-definite

$$
\nabla^{2} f(X)=2 A_{Q} \text { Constant }
$$

Convex Function

■ Several popular examples of convex functions

■ One dimensional convex functions
\checkmark Linear:
$f(x)=b x+c$

- Exponential:
$f(x)=e^{a x}$
\checkmark Power:
$f(x)=x^{a}(a<0$ or $a>1, x>0)$

■ N -dimensional convex functions
\checkmark Linear:

$$
f(X)=B^{\top} X+C
$$

v L_{2}-norm:
$f(X)=\|X\|_{2}$
v Max:
$f(X)=\max \left(x_{1}, x_{2}, \ldots, x_{N}\right)$

- Log-sum-exp: $f(X)=\log \left(e^{\times 1}+e^{\times 2}+\ldots+e^{x N}\right)$
, Log-determinant: $f(X)=-\log [\operatorname{det}(X)]$ (X is positive definite)

Convex Function

- Minimizing a convex function is much easier than a general nonlinear programming
v Convex functions do not contain local minima

Convex function

Global minimum

Non-convex function

Constrained Nonlinear Optimization

- The least-squares problem attempts to minimize a convex cost function without any constraints

■ Many practical optimization problems contain both a cost function and a number of constraints
v E.g., minimax optimization for regression

$$
\begin{aligned}
& \min _{X, t} t \\
& \text { S.T. }\left\{\begin{array}{c}
-t \leq A(1,:) \cdot X-B_{1} \leq t \\
-t \leq A(2,:) \cdot X-B_{2} \leq t \\
\vdots \\
-t \leq A(M,:) \cdot X-B_{M} \leq t
\end{array}\right\} \longrightarrow \text { Cost function }
\end{aligned}
$$

Constrained Nonlinear Optimization

- A general nonlinear programming problem has the form of:

$$
\begin{array}{ll}
\min _{X} & f(X) \\
\text { S.T. } & \left\{\begin{array}{c}
g_{1}(X) \leq 0 \\
g_{2}(X) \leq 0 \\
\vdots
\end{array}\right.
\end{array}
$$

■ Equality constraints can be expressed in this general form

$$
g(x)=0
$$

$$
\left\{\begin{array}{c}
g(x) \leq 0 \\
-g(x) \leq 0
\end{array}\right.
$$

Constrained Nonlinear Optimization

- A point X is feasible if it satisfies all constraints:

$$
\left\{\begin{array}{l}
g_{1}(X) \leq 0 \\
g_{2}(X) \leq 0
\end{array}\right.
$$

- The set of all feasible points is called the feasible set, or the constraint set
- An optimization is said to be feasible, if the corresponding feasible set is non-empty

Constrained Nonlinear Optimization

■ Feasible set plays an important role in nonlinear optimization

- Even if the cost function is convex, nonlinear optimization can still be difficult given a "bad" feasible set

Good feasible set (convex)

Bad feasible set (non-convex)

VERY bad feasible set (discontinuous)

Convex Set

■ A set D is convex, if for all $X_{1}, X_{2} \in D$ and $0 \leq \alpha \leq 1$, we have

$$
\alpha \cdot X_{1}+(1-\alpha) \cdot X_{2} \in D
$$

Contains any line segment between two points in the set

Convex

Non-convex

Convex Set

■ Several popular examples of convex sets
\checkmark Hyperplane: $\quad\left\{X \mid B^{\top} X=C\right\}$
\checkmark Polytope: $\quad\left\{X \mid B^{\top} X \leq C\right\}$
, Ball:

$$
\|X\|_{2} \leq \mathrm{C}
$$

\checkmark Positive semi-definite matrices (a non-trivial example):

$$
\left\{X \mid X \in R^{N \times N}, X=X^{T}, X \succ=0\right\}
$$

VIf X_{1} and X_{2} are positive semi-definite, their positive combination is also positive semi-definite

$$
\frac{\alpha \cdot X_{1}}{\unlhd}+\frac{(1-\alpha)}{\swarrow} \cdot X_{2} \succ=0
$$

Positive coefficients

Convex Set

■ Given a function $f(X)$, the α-sublevel set is defined as:

$$
\{X \mid f(X) \leq \alpha\}
$$

■ If $f(X)$ is convex, its sublevel sets are convex

Convex Set

\square Set convexity is preserved under intersection
\checkmark If D_{1} and D_{2} are convex then $D_{1} \cap D_{2}$ is convex

Intersection is convex

Convex Optimization

$$
\begin{array}{ll}
\min _{X} & f(X) \\
\text { S.T. } & \left\{\begin{array}{c}
g_{1}(X) \leq 0 \\
g_{2}(X) \leq 0 \\
\vdots
\end{array}\right.
\end{array}
$$

■ If all $g_{i}(X)$'s are convex, the constraint set is convex
\checkmark Constraint set is the intersection of all convex 0 -sublevel sets
\square The minimization of a convex cost function over a convex constraint set is called convex optimization

Convex Optimization

- The following optimizations are NOT convex, even if $f(X)$ and $g(X)$ are both convex

$$
\begin{array}{ll}
\max _{x}^{X} & f(X) \\
\text { S.T. } & g(X) \leq 0
\end{array}
$$

Maximizing a convex function is not a convex optimization

$$
\begin{array}{cl}
\min _{X} & f(X) \\
\text { S.T. } & g(X) \geq 0
\end{array}
$$

Constraint set is not convex

Convex Optimization

■ Linear programming is a special case of convex optimization

- Most convex optimization with smooth cost function and constraints can be efficiently and robustly solved
\checkmark Decide if the optimization is feasible or infeasible
\checkmark If feasible, provide the optimal solution

■ Several good convex solvers
v MOSEK (www.mosek.com)
, CVX (www.stanford.edu/~boyd/cvx/)

- More details on convex solver in future lectures...

Summary

■ Convex analysis
v Convex function

- Convex set
- Convex optimization

