CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

■ Over-determined Linear Equation Solver

- Pseudo-inverse
- QR decomposition

Over-Determined Linear Equation

■ Fit an approximate function $f(x)$ from sampling points

$$
f(x) \approx \alpha_{1} \cdot b_{1}(x)+\alpha_{2} \cdot b_{2}(x)+\cdots
$$

Over-Determined Linear Equation

■ Solve over-determined linear equation
v No exact solution to satisfy all equations, but we can find the least-squares solution:

$$
\begin{gathered}
A \cdot \alpha=B \\
\square
\end{gathered}
$$

$$
\min _{\alpha}\|A \cdot \alpha-B\|_{2}^{2}
$$

(Least-squares solution)

Over-Determined Linear Equation

■ There are two popular approaches to solve over-determined linear equations

Over-Determined Linear Equation

■ Solution 1

$$
A \cdot \alpha=B
$$

Over-Determined Linear Equation

■ Solution 1

$$
\begin{aligned}
& {\left[\begin{array}{r}
\\
A^{T} \\
\mathrm{NxM}
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \square \\
& \begin{array}{|c}
\alpha=\left(A^{T} A\right)^{-1} \cdot\left(A^{T} B\right) \\
\hline \downarrow \\
\mathrm{NxN} \\
\hline \mathrm{Nx1}
\end{array}
\end{aligned}
$$

We can prove that the solution yields least-squared error

Over-Determined Linear Equation

- Proof of optimality

$$
\begin{gathered}
\min _{\alpha}\|A \cdot \alpha-B\|_{2}^{2} \\
F(\alpha)=\|A \cdot \alpha-B\|_{2}^{2}=(A \cdot \alpha-B)^{T} \cdot(A \cdot \alpha-B) \\
F(\alpha)=\|A \cdot \alpha-B\|_{2}^{2}=\left(\alpha^{T} \cdot A^{T}-B^{T}\right) \cdot(A \cdot \alpha-B) \\
F(\alpha)=\alpha^{T} A^{T} A \alpha-\alpha^{T} A^{T} B-B^{T} A \alpha+B^{T} B
\end{gathered}
$$

Over-Determined Linear Equation

■ Proof of optimality

$$
\begin{gathered}
F(\alpha)=\alpha^{T} A^{T} A \alpha-\alpha^{T} A^{T} B-B^{T} A \alpha+B^{T} B \\
\alpha^{T} A^{T} B=\left(\alpha^{T} A^{T} B\right)^{T}=B^{T} A \alpha \\
F(\alpha)=\alpha^{T} A^{T} A \alpha-2 B^{T} A \alpha+B^{T} B \\
\frac{\partial}{\partial \alpha} F(\alpha)=\frac{\partial}{\partial \alpha}\left(\alpha^{T} A^{T} A \alpha\right)-\frac{\partial}{\partial \alpha}\left(2 B^{T} A \alpha\right)=0
\end{gathered}
$$

Over-Determined Linear Equation

■ Proof of optimality

$$
\frac{\partial}{\partial \alpha} F(\alpha)=\frac{\partial}{\partial \alpha}\left(\alpha^{T} \frac{A^{T} A \alpha}{\mathrm{~W}}\right)-\frac{\partial}{\partial \alpha}\left(\frac{2 B^{T} A \alpha}{\mathrm{P}^{\top}}\right)=0
$$

$$
W=A^{T} A \quad \alpha^{T} W \alpha=\sum_{i} \sum_{j} w_{i j} \alpha_{i} \alpha_{j}
$$

$$
\begin{aligned}
\frac{\partial}{\partial \alpha_{n}}\left(\alpha^{T} W \alpha\right) & =\frac{\partial}{\partial \alpha_{n}}\left(w_{n n} \alpha_{n}^{2}+\sum_{i \neq n} w_{i n} \alpha_{i} \alpha_{n}+\sum_{j \neq n} w_{n j} \alpha_{n} \alpha_{j}\right) \\
& =2 w_{n n} \alpha_{n}+\sum_{i \neq n} w_{i n} \alpha_{i}+\sum_{j \neq n} w_{n j} \alpha_{j} \\
& =2 w_{n n} \alpha_{n}+\sum_{j \neq n} 2 w_{n j} \alpha_{j} \\
& =\sum_{j} 2 w_{n j} \alpha_{j}
\end{aligned}
$$

Over-Determined Linear Equation

■ Proof of optimality

$$
\frac{\partial}{\partial \alpha} F(\alpha)=\frac{\partial}{\partial \alpha}\left(\alpha^{T} \frac{A^{T} A \alpha}{\mathrm{~W}}\right)-\frac{\partial}{\partial \alpha}\left(\frac{2 B^{T} A \alpha}{\mathrm{P}^{\top}}\right)=0
$$

$$
W=A^{T} A
$$

$$
\frac{\partial}{\partial \alpha_{n}}\left(\alpha^{T} W \alpha\right)=\sum_{j} 2 w_{n j} \alpha_{j}
$$

$$
\frac{\partial}{\partial \alpha}\left(\alpha^{T} W \alpha\right)=\left[\begin{array}{c}
\frac{\partial}{\partial \alpha_{1}}\left(\alpha^{T} W \alpha\right) \\
\frac{\partial}{\partial \alpha_{2}}\left(\alpha^{T} W \alpha\right) \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\sum_{j} 2 w_{1 j} \alpha_{j} \\
\sum_{j} 2 w_{2 j} \alpha_{j} \\
\vdots
\end{array}\right]=2 W \alpha=2 A^{T} A \alpha
$$

Over-Determined Linear Equation

■ Proof of optimality

$$
\begin{gathered}
\frac{\partial}{\partial \alpha} F(\alpha)=\frac{\partial}{\partial \alpha}\left(\alpha^{T} \frac{A^{T} A \alpha}{W}\right)-\frac{\partial}{\partial \alpha}\left(\frac{2 B^{T} A \alpha}{P^{T}}\right)=0 \\
P=\left(B^{T} A\right)^{T}=A^{T} B \quad 2 P^{T} \alpha=\sum_{i} 2 p_{i} \alpha_{i} \\
\frac{\partial}{\partial \alpha_{n}}\left(2 P^{T} \alpha\right)=\frac{\partial}{\partial \alpha_{n}}\left(\sum_{i} 2 p_{i} \alpha_{i}\right)=2 p_{i} \\
\frac{\partial}{\partial \alpha}\left(2 P^{T} \alpha\right)=\left[\begin{array}{c}
\frac{\partial}{\partial \alpha_{1}}\left(2 P^{T} \alpha\right) \\
\left.\frac{\partial}{\partial \alpha_{2}}\left(2 P^{T} \alpha\right)\right]=\left[\begin{array}{c}
2 p_{1} \\
2 p_{2} \\
\vdots
\end{array}\right]=2 P=2 A^{T} B
\end{array}\right.
\end{gathered}
$$

Over-Determined Linear Equation

■ Proof of optimality

$$
\frac{\partial}{\partial \alpha} F(\alpha)=\frac{\partial}{\partial \alpha}\left(\alpha^{T} \frac{A^{T} A}{\mathrm{~W}}\right)-\frac{\partial}{\partial \alpha}\left(\frac{2 B^{T} A \alpha}{\mathrm{P}^{\top}}\right)=0
$$

$$
\frac{\partial}{\partial \alpha}\left(\alpha^{T} W \alpha\right)=2 A^{T} A \alpha \quad \frac{\partial}{\partial \alpha}\left(2 P^{T} \alpha\right)=2 A^{T} B
$$

$$
2 A^{T} A \alpha-2 A^{T} B=0
$$

$$
\alpha=\left(A^{T} A\right)^{-1} \cdot\left(A^{T} B\right)
$$

Over-Determined Linear Equation

■ Solution 2

$$
A \cdot \alpha=B
$$

\square QR decomposition

Orthogonal, i.e., $Q^{\top} Q=I \quad$ Upper triangular

QR Decomposition

$$
\begin{aligned}
& {\left[\begin{array}{lll}
& & \\
A_{1} & A_{2} & \cdots \\
& &
\end{array}\right]=\left[\begin{array}{lll}
Q_{1} & Q_{2} & \cdots \\
& &
\end{array}\right] \cdot\left[\begin{array}{lll}
r_{11} & r_{12} & \cdots \\
& r_{22} & \cdots \\
& & \ddots
\end{array}\right]} \\
& A_{1}=Q_{1} \cdot r_{11} \\
& Q_{1}^{T} Q_{1}=1
\end{aligned} \begin{array}{lll}
\left\|A_{1}\right\|_{2}=r_{11} \cdot\left\|Q_{1}\right\|_{2} & Q_{1}=\frac{A_{1}}{r_{11}} \\
r_{11}=\left\|A_{1}\right\|_{2} & &
\end{array}
$$

QR Decomposition

$$
A_{2}=Q_{1} \cdot r_{12}+Q_{2} \cdot r_{22} \quad Q_{2}^{T} Q_{2}=1 \quad Q_{1}^{T} Q_{2}=0
$$

$$
\begin{gathered}
Q_{1}^{T} A_{2}=Q_{1}^{T} Q_{1} \cdot r_{12}+Q_{1}^{T} Q_{2} \cdot r_{22} \\
r_{12}=Q_{1}^{T} A_{2}
\end{gathered}
$$

QR Decomposition

$$
A_{2}=Q_{1} \cdot r_{12}+Q_{2} \cdot r_{22} \quad Q_{2}^{T} Q_{2}=1 \quad Q_{1}^{T} Q_{2}=0
$$

$$
A_{2}-r_{12} Q_{1}=Q_{2} r_{22}
$$

$$
\left\|A_{2}-r_{12} Q_{1}\right\|_{2}=r_{22} \cdot\left\|Q_{2}\right\|_{2}
$$

$$
Q_{2}=\frac{A_{2}-r_{12} Q_{1}}{r_{22}}
$$

Continue iteration until Q and R are found

QR Decomposition

- Geometrical interpretation

Start from two vectors A_{1} and A_{2}

Normalized A_{1} to determine Q_{1}

QR Decomposition

- Geometrical interpretation

Decompose A_{2} into $r_{12} Q_{1}$ and $r_{22} Q_{2}$

Normalized $\mathrm{r}_{22} \mathrm{Q}_{2}$ to determine Q_{2}

QR Decomposition

■ It is referred to as classical Gram-Schmidt algorithm
v Q may not be orthogonal due to numerical errors

■ Modified Gram-Schmidt algorithm was proposed to further improve numerical stability

- More details can be found at

Numerical Recipes: The Art of Scientific Computing, 2007

Over-Determined Linear Equation

■ Solution 2

Over-Determined Linear Equation

■ In theory, these two approaches yield identical results

$$
\begin{gathered}
A \cdot \alpha=B \quad A=Q \cdot R \\
A^{T} A=R^{T} Q^{T} Q R=R^{T} R \\
\left(A^{T} A\right)^{-1}=\left(R^{T} R\right)^{-1}=R^{-1}\left(R^{T}\right)^{-1} \\
A^{T} B=R^{T} Q^{T} B \\
\alpha=\left(A^{T} A\right)^{-1} \cdot\left(A^{T} B\right)=R^{-1}\left(R^{T}\right)^{-1} \cdot R^{T} Q^{T} B=R^{-1} Q^{T} B
\end{gathered}
$$

$\left(A^{\top} A\right)^{-1} A^{\top}=R^{-1} Q^{\top}$ is often referred to as pseudo-inverse of A

Over-Determined Linear Equation

■ In practice, Solution 2 is preferred since it is more robust to numerical noise
, MATLAB uses a modified version of solution 2 to solve overdetermined linear equations

- You can use a simple command " α = AlB" to solve overdetermined linear equations in MATLAB
- To understand the numerical difference, we check the condition number of both approaches

Over-Determined Linear Equation

- A simple example based on L_{1} matrix norm

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & 10^{-5} \\
10^{-10} & 10^{-10}
\end{array}\right]
$$

$$
A^{T} A=\left[\begin{array}{cc}
1 & 10^{-20} \\
10^{-20} & 10^{-10}
\end{array}\right] \quad R=\left[\begin{array}{cc}
1 & 10^{-20} \\
0 & 10^{-5}
\end{array}\right]
$$

$k\left(A^{T} A\right)=10^{10}$
Solution 1

$$
k(R)=10^{5}
$$

Solution 2

Over-Determined Linear Equation

■ Comparison on two solutions

$$
\begin{array}{cc}
\text { Solution 1 } & \alpha=\left(A^{T} A\right)^{-1} \cdot\left(A^{T} B\right) \\
\text { Solution 2 } & \alpha=R^{-1} \cdot\left(Q^{T} B\right) \\
k\left(A^{T} A\right) \gg k(R)
\end{array}
$$

Solution 2 is more numerically robust

Summary

■ Over-determined linear equation solver
\checkmark Pseudo-inverse

- QR decomposition

