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m Linear Regression
N Ordinary least-squares regression
X Minimax optimization
N Design of experiments
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Linear Regression

m Linear regression (also referred to as response surface
modeling) is widely used for many engineering problems
~ We do not know the analytical form of f(x)
N But we can generate a set of sampling points for f(x)
N Fit an approximate function for f(x) from these sampling points

()~ 0 by (0)+ B, )+

L)

Model Basis
coefficients functions

f(x) is approximated as the linear
combination of multiple basis functions
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Linear Regression

m Major steps of linear regression
N Select a model template (e.g., polynomial function)
N Generate a number of sampling points
~ Compute performance values at these sampling points
N Create a set of linear equations to solve model coefficients

m A simple example
f(x) = exp(x), x € [-1, 1]
 We will use this simple example to show how we can generally
build a regression model from sampling data
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Linear Regression Example

m Step 1: select a model template
f(x)~bx+c

m Step 2: generate a number of sampling points

Samples 1 2 3 4 5
X -1 -0.5 0 0.5 1

m Step 3: compute performance values at these sampling points

Samples 1 2 3 4 5
f(x) 0.3679 0.6065 1.0000 1.6487 2.7183
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Linear Regression Example

m Step 4: create linear equations for model coefficients

f(x)~bx+c
Samples 1 2 3 4 5
X Al 0.5 0 0.5 1
f(x) 0.3679 0.6065 1.0000 1.6487 2.7183
-1 1] (0.3679
-05 1 0.6065
0o 1 } =|1.0000 |« i-th sampling point
05 1 1.6487
1 1 | 2.7183
2 IR
X values f(x) values
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Linear Regression Example

m Step 5: solve over-determined linear equations
“ # of equations is greater than # of coefficients — over-determined

~ No exact solution exists to satisfy all equations, but we can find
the least-squares solution:

A-a=B

s

min HA‘“_BHZ Ordinary least-squares
@ T ? (OLS) regression

Vector

< For a vector ¢ € RM, ||¢]|, is defined as:

M
_ 2
lel, =/ 2.4
i=1
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Linear Regression Example

A-aa=B A

we)

“2 | _ Erroratthe i-th
sampling point

Iy
.. O
w
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Linear Regression Example

M samples < A |a=|B (M>N)

N coefficients

m There are several possible ways to solve over-determined
linear equations for linear regression
< We will explain these algorithms in detall in future lectures
~ For now, you can simply use “a = A\B” in MATLAB
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Linear Regression Example

-1
-0.5
0
0.5
1

N e el el

0.6065
1.0000
1.6487

27183

b=1.1486
c =1.2683

0.3679 |

m Step 5: solve over-determined linear equations

H——exp(X)

——Linear

Linear model results in large error

-0.5

0
X

0.5

1
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Quadratic Model Example

m What if we build a quadratic model for y = exp(x)?
N Select a model template

f(x)~ax®+bx+c

N Generate a number of sampling points

Samples 1 2 3 4 5
X -1 -0.5 0 0.5 1

N Compute performance values at these sampling points

Samples 1 2 3 4 5
f(x) 0.3679 0.6065 1.0000 1.6487 2.7183
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Quadratic Model Example

f(x)~ax®+bx+c

m Create a set of linear equations to solve model coefficients

Samples 1 2 3 4 5
X -1 -0.5 0 0.5 1
f(X) 0.3679 0.6065 1.0000 1.6487 2.7183
1 -1 1] [0.3679 |
025 -05 1|[a| |0.6065
0 0 1|b 1.0000
025 05 1||c] |1.6487
1 1 1 | 2.7183 |
122 IR
X2 X f(x) values
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Quadratic Model Example

1 -1 1
0.25 -05 1|[a]
0 0 1]-|b
025 05 1||c|
11 1]
1L
a=0.5477
b =1.1486
c = 0.9944

0.6065
1.0000
1.6487

27183

0.3679 |

m Build quadratic model for y = exp(x)

— Quadratic
2.5 exp(x)

-1 -0.5 0 0.5 1
X

Quadratic model results in much
better accuracy in this example
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Linear Model vs. Quadratic Model

Linear RSM

Quadratic RSM ~ exp(x)~ 0.5477x* +1.1486x +0.9944

exp(x)~1.1486x +1.2683

-1 -0.5 0 0.5 1

m Regression model is different from direct Taylor expansion

< E.g., different constant terms in linear and quadratic models —
they are selected to minimize the least-squares error

——Linear
H—exp(X)

Minimize least-
[ squares error

“ _ Direct Taylor |
e expansion

X

Linear model for exp(x)
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Minimax Optimization

m We can also solve over-determined linear equations to satisfy
other optimality criteria (i.e., not ordinary least-squares)

A-a=B
I-th row of A i ) o
/ i _'t_h oWl | , Errorat the i-th
H—\ sampling point

min  max|A(i,:)-a — B

Minimize the maximal
absolute error - . L
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Minimax Optimization

m Other optimality criteria can be similarly formulated

A-a=B
I-th row of A
A i _'t_h w1 , Errorat the i-th
. Ali,:)-—B, sampling point
min  maxj—-— 3 ! A a—|B
Minimize the maximal

relative error - - -

These formulations are minimax optimization problems
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Minimax Optimization

m General minimax problems are difficult to solve
w Cost function does not have continuous derivative

g(ap
max(g,, &)

QRY

Slide 17



Minimax Optimization

m However, our minimax problem for regression modeling can
be re-formulated into a special form

m Consider the example of absolute error minimization

min  max|A(i,:)-« — B|]

Introduce a slack variable t

rg,itn t } Cost function
(AL @-BJ<t Y
A(2,:)-a-B,|<t
ST. A : > Constraints
/ .
Subject to \A(M :)-a- By|<t
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Minimax Optimization

n;itn t mitn t
(|A(L:) @ -B|<t j ~t<AlL:) a—B, <t
ST . ‘A(Z,:)ﬂ.—BZ‘St —_ ~t<A(2:)-a-B, <t
|AM,:)-a -B,, | <t ~t<AM,:)-a-B, <t

m Re-written as a linear programming (LP) problem
< Both cost function and constraints are linear
< No closed-form solution exists for LP

N Can be numerically solved by an efficient (i.e., low complexity)
and robust (i.e., global convergence) algorithm
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Design of Experiments (DOE)

m We already know the basics for linear regression

m Open problem:
~ How can we select few samples to achieve good accuracy?

m A bad linear model example: f(x,, X,) = a-x; + b-x, +C

XoA
(X1: 1 X2:O fl)

o0—O0—0- (=0 x=0 f,)
1 0 1% (x,=1 x,=0 f,)

Sampling points for linear model
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Design of Experiments (DOE)

m Linear model example (continued)

(Xl =-1 X, =0 fl)

f(x,X,)=a-x +b-x,+c (x,=0 x,=0 f,)
(X1:1 X, =0 f3)
X; X 1
-1 0 1|[a] [f,]
0 0 1||b|=|T,
1 0 1j|c] [f;

!

Singular matrix (cannot solve the coefficient b)
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Design of Experiments (DOE)

m Linear model example (continued)

—( OO No variation is applied to x,

iy

Add additional sampling points for x,
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Design of Experiments (DOE)

m A bad quadratic model example: f(x;, X,) = @;-X;? + 8;,"X;*X, +

X26 (Xl =0 x,=0 fl)
(x,=0 x,=-1 f,)
—0—0—0~ (=0 %=1 f)
1 o<> 1 % (x,=-1 x,=0 f,)
(X1:1 X, =0 f5)

Sampling points for quadratic model
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Design of Experiments (DOE)

m Quadratic model example (continued) (x,=0 x,=0 f,)
(Xl =0 x,=-1 fz)
(x,=0 x,=1 f,)
(Xl =-1 X, =0 f4)

@ (x,=1 x,=0 f,)

2 2
f(xl’XZ):ail'Xl T, - X - Xy Ay, X,

+b, - X +b,- X, +cC

000 0 0 1]|™ f

001 0 -11||2| |t

001 0 1 1| *|=|f,
b

100—101b1 f,

100 1 0 1| °° f

i 1| o | L'sd
¢ L

Singular matrix (cannot solve the coefficient a,,)

Slide 24



Design of Experiments (DOE)

m Quadratic model example (continued)

Cross-product terms cannot be
captured

Add additional sampling points for x,X,
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Design of Experiments (DOE)

m Design of experiments (DOE) Is a research area that studies
how to optimally select sampling points for modeling

m Given a model template (e.g., linear or quadratic function),
optimize sampling points for certain optimal criterion
N E.g., maximize modeling accuracy

m Numerical optimization may be required to find the optimal
sampling scheme

D. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2004
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m Linear regression
N Ordinary least-squares regression
X Minimax optimization
N Design of experiments
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