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Overview 

 Linear Regression 
 Ordinary least-squares regression 
 Minimax optimization 
 Design of experiments 
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Linear Regression 

 Linear regression (also referred to as response surface 
modeling) is widely used for many engineering problems 
 We do not know the analytical form of f(x) 
 But we can generate a set of sampling points for f(x) 
 Fit an approximate function for f(x) from these sampling points 

f(x) 

x 

( ) ( ) ( ) +⋅+⋅≈ xbxbxf 2211 αα

Model 
coefficients 

Basis 
functions 

f(x) is approximated as the linear 
combination of multiple basis functions 
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Linear Regression 

 Major steps of linear regression 
 Select a model template (e.g., polynomial function) 
 Generate a number of sampling points 
 Compute performance values at these sampling points 
 Create a set of linear equations to solve model coefficients 

 
 A simple example 

 f(x) = exp(x), x ∈ [-1, 1] 
 We will use this simple example to show how we can generally 

build a regression model from sampling data 
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Linear Regression Example 

 Step 1: select a model template 
 
 

 Step 2: generate a number of sampling points 
 
 
 

 Step 3: compute performance values at these sampling points 
Samples 1 2 3 4 5 

f(x) 0.3679 0.6065 1.0000 1.6487 2.7183 

( ) cbxxf +≈

Samples 1 2 3 4 5 
x -1 -0.5 0 0.5 1 
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Linear Regression Example 

 Step 4: create linear equations for model coefficients 
( ) cbxxf +≈
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Linear Regression Example 

 Step 5: solve over-determined linear equations 
 # of equations is greater than # of coefficients – over-determined 
 No exact solution exists to satisfy all equations, but we can find 

the least-squares solution: 
 
 
 
 
 
 

 For a vector ε ∈ RM, ||ε||2 is defined as: 

BA =⋅α
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Ordinary least-squares 
(OLS) regression 
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Linear Regression Example 
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Linear Regression Example 

 
 
 
 
 
 
 
 

 There are several possible ways to solve over-determined 
linear equations for linear regression 
 We will explain these algorithms in detail in future lectures 
 For now, you can simply use “α = A\B” in MATLAB 
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Linear Regression Example 

 Step 5: solve over-determined linear equations 

Linear model results in large error 
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Quadratic Model Example 

 What if we build a quadratic model for y = exp(x)? 
 Select a model template 

 
 

 Generate a number of sampling points 
 
 
 
 

 Compute performance values at these sampling points 

Samples 1 2 3 4 5 
f(x) 0.3679 0.6065 1.0000 1.6487 2.7183 

( ) cbxaxxf ++≈ 2

Samples 1 2 3 4 5 
x -1 -0.5 0 0.5 1 
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Quadratic Model Example 

 Create a set of linear equations to solve model coefficients 
( ) cbxaxxf ++≈ 2

Samples 1 2 3 4 5 
x -1 -0.5 0 0.5 1 

f(x) 0.3679 0.6065 1.0000 1.6487 2.7183 
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Quadratic Model Example 

 Build quadratic model for y = exp(x) 
 

Quadratic model results in much 
better accuracy in this example 
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Linear Model vs. Quadratic Model 

 
 

 Regression model is different from direct Taylor expansion 
 E.g., different constant terms in linear and quadratic models – 

they are selected to minimize the least-squares error 

Linear model for exp(x) 

Minimize least-
squares error 

Direct Taylor 
expansion 

( ) 9944.01486.15477.0exp 2 ++≈ xxx

( ) 2683.11486.1exp +≈ xxLinear RSM 

Quadratic RSM 
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Minimax Optimization 

 We can also solve over-determined linear equations to satisfy 
other optimality criteria (i.e., not ordinary least-squares) 
 BA =⋅α

( ) ii
BiA −⋅α

α
:,maxmin

Minimize the maximal 
absolute error 

i-th row of A 
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Minimax Optimization 

 Other optimality criteria can be similarly formulated 

These formulations are minimax optimization problems 

( )
i

i

i B
BiA −⋅α

α

:,maxmin

i-th row of A 

Minimize the maximal 
relative error 

BA =⋅α
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Minimax Optimization 

 General minimax problems are difficult to solve 
 Cost function does not have continuous derivative 

max(ε1, ε2) 

α 

ε(α) 

ε1(α) ε2(α) 
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Minimax Optimization 

 However, our minimax problem for regression modeling can 
be re-formulated into a special form 
 

 Consider the example of absolute error minimization 

Introduce a slack variable t 
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Minimax Optimization 

 
 
 
 
 
 

 Re-written as a linear programming (LP) problem 
 Both cost function and constraints are linear 
 No closed-form solution exists for LP 
 Can be numerically solved by an efficient (i.e., low complexity) 

and robust (i.e., global convergence) algorithm 
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Design of Experiments (DOE) 

 We already know the basics for linear regression 
 

 Open problem: 
 How can we select few samples to achieve good accuracy? 

 
 A bad linear model example: f(x1, x2) =  a⋅x1 + b⋅x2 + c 

Sampling points for linear model 

x1 

x2 

-1 0 1 
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Design of Experiments (DOE) 

 Linear model example (continued) 
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Design of Experiments (DOE) 

 Linear model example (continued) 
 

x1 

x2 

-1 0 1 
No variation is applied to x2 

Add additional sampling points for x2 x1 

x2 

-1 0 1 
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Design of Experiments (DOE) 

 A bad quadratic model example: f(x1, x2) = a11⋅x1
2 + a12⋅x1⋅x2 + 

a22⋅x2
2 + b1⋅x1 + b2⋅x2 + c 
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Design of Experiments (DOE) 

 Quadratic model example (continued) 
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Design of Experiments (DOE) 

 Quadratic model example (continued) 

Cross-product terms cannot be 
captured 

x1 
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Design of Experiments (DOE) 

 Design of experiments (DOE) is a research area that studies 
how to optimally select sampling points for modeling 
 

 Given a model template (e.g., linear or quadratic function), 
optimize sampling points for certain optimal criterion 
 E.g., maximize modeling accuracy 

 
 Numerical optimization may be required to find the optimal 

sampling scheme 

D. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2004 
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Summary 

 Linear regression 
 Ordinary least-squares regression 
 Minimax optimization 
 Design of experiments 
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