CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

- Nonlinear Equation Solver
v Newton-Raphson method
vinary search

Nonlinear Algebraic Equation

■ Many physical systems are nonlinear and must be mathematically described as a nonlinear equation

$$
F(x)=0
$$

■ Example: nonlinear ordinary differential equation

$$
F[\dot{x}(t), x(t), u(t)]=0 \quad x(0)=X
$$

$x(t): \quad \mathrm{N}$-dimensional vector of unknown variables
$u(t): \quad$ Vector of input sources
F: Nonlinear operator
X: Initial condition

Nonlinear Algebraic Equation

$$
F(x)=0
$$

■ Closed-form solution cannot be derived for a general nonlinear equation

■ Iterative algorithm must be applied to find an approximate solution (i.e., numerical solution)

■ Newton-Raphson method is a widely-used algorithm to solve nonlinear algebraic equation

Newton-Raphson Method

■ A one-dimensional example

$$
F(x)=0 \quad \square \begin{cases}\text { k-th iteration: } & F\left[x^{(k)}\right] \neq 0 \\ \text { Update solution: } & x^{(k+1)}=x^{(k)}+\Delta x^{(k)}\end{cases}
$$

Linearize $F(x)$ via first-order Taylor series expansion and solve iteratively

Newton-Raphson Method

- Taylor series approximation
\checkmark For a convergent series and sufficiently small $\Delta x^{(k)}$

$$
F\left[x^{(k)}+\Delta x^{(k)}\right]=F\left[x^{(k)}\right]+F^{\prime}\left[x^{(k)}\right] \cdot \Delta x^{(k)}+\cdots
$$

■ Newton-Raphson method relies on 1st-order Taylor expansion

- The function $\mathrm{F}(\bullet)$ must be smooth and its derivative exists

Newton－Raphson Method

■ Apply first－order Taylor expansion

$$
\begin{gathered}
F\left[x^{(k+1)}\right] \approx F\left[x^{(k)}\right]+F^{\prime}\left[x^{(k)}\right] \cdot \frac{\left[x^{(k+1)}-x^{(k)}\right]}{\Delta \mathrm{x}^{(k)}}=0 \\
\Delta x^{(k)}=-\frac{F\left[x^{(k)}\right]}{F^{\prime}\left[x^{(k)}\right]} \\
⿻ コ 一 \\
x^{(k+1)}=x^{(k)}-\frac{F\left[x^{(k)}\right]}{F^{\prime}\left[x^{(k)}\right]}
\end{gathered}
$$

■ Global convergence is not guaranteed in general
จ Many techniques exist to improve convergence

Newton-Raphson Method

■ A simple example:

Newton-Raphson Method

■ A simple example:

Damping can be applied to limit the extent of the linearized projection within one iteration

Newton-Raphson Method

$$
\begin{gathered}
F\left[x^{(k+1)}\right] \approx F\left[x^{(k)}\right]+F^{\prime}\left[x^{(k)}\right] \cdot\left[x^{(k+1)}-x^{(k)}\right]=0 \\
\text { Accurate if } x^{(k)} \text { and } x^{(k+1)} \text { are close }
\end{gathered}
$$

■ Start Newton-Raphson iteration from a good initial solution

■ In practice, a good initial solution may be unknown

■ An alternative approach is to randomly select multiple initial solutions and apply Newton-Raphson method to each of them

A Simple Example

$$
\begin{gathered}
F(x)=\log (x)=0 \\
F^{\prime}(x)=\frac{1}{x}
\end{gathered}
$$

■ Start from an initial solution $x^{(0)}=0.1$

$$
\begin{gathered}
F\left[x^{(0)}\right]=\log (0.1)=-2.30 \\
F^{\prime}\left[x^{(0)}\right]=\frac{1}{0.1}=10
\end{gathered}
$$

A Simple Example

$$
\begin{array}{rlrl}
F(x)=\log (x)=0 & x^{(0)} & =0.1 \\
F^{\prime}(x)=\frac{1}{x} & F\left[x^{(0)}\right] & =-2.30 \\
F^{\prime}\left[x^{(0)}\right] & =10
\end{array}
$$

■ Iteration \#1

$$
\begin{gathered}
F\left[x^{(1)}\right] \approx F\left[x^{(0)}\right]+F^{\prime}\left[x^{(0)}\right] \cdot\left[x^{(1)}-x^{(0)}\right]=0 \\
-2.3+10 \cdot\left[x^{(1)}-0.1\right]=0 \\
x^{(1)}=0.33 \\
F\left[x^{(1)}\right]=\log (0.33)=-1.11 \\
F^{\prime}\left[x^{(1)}\right]=\frac{1}{0.33}=3
\end{gathered}
$$

A Simple Example

$$
\begin{array}{cc}
F(x)=\log (x)=0 & x^{(1)}=0.33 \\
F^{\prime}(x)=\frac{1}{x} & F\left[x^{(1)}\right]=-1.11 \\
F^{\prime}\left[x^{(1)}\right]=3
\end{array}
$$

■ Iteration \#2

$$
\begin{gathered}
F\left[x^{(2)}\right] \approx F\left[x^{(1)}\right]+F^{\prime}\left[x^{(1)}\right] \cdot\left[x^{(2)}-x^{(1)}\right]=0 \\
-1.11+3 \cdot\left[x^{(2)}-0.33\right]=0 \\
x^{(2)}=0.70 \\
F\left[x^{(2)}\right]=\log (0.70)=-0.36 \\
F^{\prime}\left[x^{(2)}\right]=\frac{1}{0.70}=1.43
\end{gathered}
$$

A Simple Example

$$
\begin{array}{crl}
F(x)=\log (x)=0 & x^{(2)} & =0.70 \\
F^{\prime}(x)=\frac{1}{x} & F\left[x^{(2)}\right]=-0.36 \\
F^{\prime}\left[x^{(2)}\right] & =1.43
\end{array}
$$

■ Iteration \#3

$$
\begin{gathered}
F\left[x^{(3)}\right] \approx F\left[x^{(2)}\right]+F^{\prime}\left[x^{(2)}\right] \cdot\left[x^{(3)}-x^{(2)}\right]=0 \\
-0.36+1.43 \cdot\left[x^{(3)}-0.70\right]=0 \\
x^{(3)}=0.95 \\
F\left[x^{(3)}\right]=\log (0.95)=-0.05 \\
F^{\prime}\left[x^{(3)}\right]=\frac{1}{0.95}=1.05
\end{gathered}
$$

Newton-Raphson Method

■ Extend to multi-dimensional case

$$
F(x)=0 \quad\left\{\begin{array}{c}
F_{1}(x)=0 \\
F_{2}(x)=0 \\
\vdots
\end{array}\right.
$$

, Apply first-order Taylor expansion for all F_{i} 's

$$
\begin{aligned}
& F_{1}\left[x^{(k+1)}\right]=F_{1}\left[x^{(k)}\right]+\left.\frac{\partial F_{1}}{\partial x_{1}}\right|_{k} \cdot\left[x_{1}^{(k+1)}-x_{1}^{(k)}\right]+\left.\frac{\partial F_{1}}{\partial x_{2}}\right|_{k} \cdot\left[x_{2}^{(k+1)}-x_{2}^{(k)}\right]+\cdots=0 \\
& F_{2}\left[x^{(k+1)}\right]=F_{2}\left[x^{(k)}\right]+\left.\frac{\partial F_{2}}{\partial x_{1}}\right|_{k} \cdot\left[x_{1}^{(k+1)}-x_{1}^{(k)}\right]+\left.\frac{\partial F_{2}}{\partial x_{2}}\right|_{k} \cdot\left[x_{2}^{(k+1)}-x_{2}^{(k)}\right]+\cdots=0
\end{aligned}
$$

Newton-Raphson Method

- Re-write into a matrix form

Newton-Raphson Method

■ The new $\Delta x^{(k)}$ can be solved by a linear solver

$$
\begin{gathered}
F\left[x^{(k+1)}\right] \approx F\left[x^{(k)}\right]+\left.\frac{\partial F}{\partial x}\right|_{k} \cdot \Delta x^{(k)}=0 \\
\frac{\Delta x^{(k)}}{\frac{\square}{\downarrow}}=-\frac{\left[\left.\frac{\partial F}{\partial x}\right|_{k}\right]^{-1} \cdot F\left[x^{(k)}\right]}{\downarrow} \quad \sqrt{\downarrow} \\
\text { Vector Matrix Vector }
\end{gathered}
$$

Newton-Raphson Method

■ Newton-Raphson method is applicable, if and only if $\mathrm{F}(\mathrm{x})$ is smooth and its derivative exists

- A bad example: piecewise-linear function

Newton-Raphson Method

■ If we use Newton-Raphson to solve the problem
\checkmark 2nd order derivative is not continuous
Starting from these initial solutions

Binary Search

- Binary search is an alternative algorithm that is efficient for one-dimensional non-smooth but continuous function

■ Key idea

- Assume that the solution of $F(x)=0$ is within an interval $[a, b]$
\checkmark Iteratively shrink $[\mathrm{a}, \mathrm{b}$] to find the solution x

Binary Search

$■$ Select initial interval [a, b] $F(a) \cdot F(b)<0$

- Set c as the center of $[\mathrm{a}, \mathrm{b}] \quad c=\frac{a+b}{2}$

Binary Search

■ If $\quad F(a) \cdot F(c)<0$
■ Then $b=c$

$$
\text { Solution is within }[a, c]
$$

Binary Search

■ If $\quad F(b) \cdot F(c)<0$
■ Then $\quad a=c$

Solution is within [c, b]

Continue iteration until convergence is reached

A Simple Example

$$
\log (x)=0 \quad \text { where } \quad x \in[0,10]
$$

■ Iteration \#1

$$
\begin{array}{ll}
a=0 & \\
b=10 & \log (a)<0 \\
c=5 & \log (b)>0 \\
c(c)>0
\end{array}
$$

■ Iteration \#2

$$
\begin{array}{ll}
a=0 & \log (a)<0 \\
b=5 & \log (b)>0 \\
c=2.5 & \log (c)>0
\end{array} \quad \square \quad x \in[0,2.5]
$$

A Simple Example

$$
\log (x)=0 \quad \text { where } \quad x \in[0,10]
$$

- Iteration \#3

$$
\begin{array}{ll}
a=0 & \log (a)<0 \\
b=2.5 & \log (b)>0 \\
c=1.25 & \log (c)>0
\end{array} \quad \square x \in[0,1.25]
$$

■ Iteration \#4

$$
\begin{array}{ll}
a=0 & \log (a)<0 \\
b=1.25 & \log (b)>0 \\
c=0.625 & \log (c)<0
\end{array} \quad \square x \in[0.625,1.25]
$$

Continue iteration until convergence is reached

Summary

■ Nonlinear equation solver
v Newton-Raphson method
vinary search

