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Overview 

 Linear Equation Solver 
 LU decomposition 
 Cholesky decomposition 
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Linear Equation Solver 

 Gaussian elimination solves a linear equation 
 
 
 
 

 Sometimes we want to repeatedly calculate the solutions for 
different right-hand-side vectors 
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Ordinary Differential Equation Example 

 Backward Euler integration for linear ordinary differential 
equation with constant time step ∆t 
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LU Factorization 

 It would be expensive to repeatedly run Gaussian elimination 
for many times 
 How can we save and re-use the intermediate results? 
 LU factorization is to address this problem 
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LU Factorization 

 Key idea: 
 Represent A as the product of L (lower triangular) and U 

(upper triangular) via Gaussian-elimination-like steps 
 All diagonal elements in U are set to 1 by proper scaling 
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LU factorization is unchanged as long as A is unchanged 
(i.e., independent of the right-hand-side vector B) 
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LU Factorization 
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LU Factorization 



















⋅



















=



















1

1
1

2

112

21

2221

11

21

22221

11211



















N

N

NNNNNNNN

N

N

u
uu

lll

ll
l

aaa

aaa
aaa

( )Niaul ii ,,3,21111 ==⋅



Slide 9   

LU Factorization 
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Continue iteration until all elements in L and U are solved 
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Memory Storage 

 The matrix A can be iteratively replaced by L and U 
 No additional memory is required 
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A Simple LU Example 
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A Simple LU Example 

131311121211 aulaul =⋅=⋅
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A Simple LU Example 

3232123122221221 alulalul =+⋅=+⋅
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A Simple LU Example 

2323221321 aulul =⋅+⋅
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A Simple LU Example 

333323321331 alulul =+⋅+⋅
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LU Factorization 

 Given L and U, solve linear equation via two steps 
 

BXA =⋅

LUA =

BXUL =⋅⋅
V 

VXU
BVL
=⋅
=⋅
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LU Factorization 

 
 
 
 
 
 

 Only the above two steps are repeated if the right-hand-side 
vector B is changed 
 LU factorization is not repeated 
 More efficient than Gaussian elimination 
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X VU

Forward substitution Backward substitution 
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Cholesky Factorization 

 If the matrix A is symmetric and positive definite, Cholesky 
factorization is preferred over LU factorization 
 
 
 
 

 Cholesky factorization is cheaper than LU 
 Only needs to find a single triangular matrix L (instead of two 

different matrices L and U) 

A TLL
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Cholesky Factorization 

 A must be symmetric and positive definite to make Cholesky 
factorization applicable 
 

 A symmetric matrix A is positive definite if 
 
 
 

 Sufficient and necessary condition for a symmetric matrix A 
to be positive definite: 
 All eigenvalues of A are positive 

0>⋅⋅ PAPT for any real-valued vector P ≠ 0 
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Partial Differential Equation Example 

 1-D rod discretized into 4 segments 
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Partial Differential Equation Example 

 
 
 
 
 

 Eigenvalues of A 
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Partial Differential Equation Example 

 In practice, we never calculate eigenvalues to check if a 
matrix is positive definite or not 
 Eigenvalue decomposition is much more expensive than 

solving a linear equation 

 
 If we apply finite difference to discretize steady-state heat 

equation, the resulting linear equation is positive definite 
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Partial Differential Equation Example 
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Partial Differential Equation Example 

23322231212222222121 allllallll =⋅+⋅=⋅+⋅
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Partial Differential Equation Example 

33333332323131 allllll =⋅+⋅+⋅
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Summary 

 Linear equation solver 
 LU decomposition 
 Cholesky decomposition 
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