CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

■ Linear Equation Solver
\checkmark LU decomposition

- Cholesky decomposition

Linear Equation Solver

■ Gaussian elimination solves a linear equation

$$
\left[\begin{array}{l}
A
\end{array}\right] \cdot[X]=[B]
$$

■ Sometimes we want to repeatedly calculate the solutions for different right-hand-side vectors

$$
\left[\begin{array}{c}
A] \cdot\left[X_{1}\right]=\left[B_{1}\right] \\
\text { Case } 1
\end{array}\left[{ }_{\text {Case } 2}^{[A}\right] \cdot\left[X_{2}\right]=\left[B_{2}\right]\right.
$$

Ordinary Differential Equation Example

- Backward Euler integration for linear ordinary differential equation with constant time step $\Delta \mathrm{t}$

$$
\dot{x}(t)=A \cdot x(t)+B \cdot u(t) \quad x(0)=0
$$

$$
\begin{aligned}
& x\left(t_{n+1}\right)= \frac{(I-\Delta t \cdot A)^{-1}}{\text { Identical }} \cdot \frac{\left[x\left(t_{n}\right)+\Delta t \cdot B \cdot u\left(t_{n+1}\right)\right]}{\text { Different }} \\
& \text { @ all } t_{n}^{\prime \prime} s \quad x\left(t_{0}\right)=0 \\
& @ \text { all } t_{n}^{\prime \prime} s
\end{aligned}
$$

LU Factorization

■ It would be expensive to repeatedly run Gaussian elimination for many times
v How can we save and re-use the intermediate results?

- LU factorization is to address this problem

$$
\left[\begin{array}{c}
A] \cdot\left[X_{1}\right]=\left[B_{1}\right] \\
\text { Case 1 } \\
{[A] \cdot\left[X_{2}\right]=\left[B_{2}\right]} \\
\text { Case 2 }
\end{array}\right.
$$

LU Factorization

■ Key idea:
マ Represent A as the product of L (lower triangular) and U (upper triangular) via Gaussian-elimination-like steps

- All diagonal elements in U are set to 1 by proper scaling

$$
A] \cdot[X]=[B] \quad\left[\begin{array}{l}
A \\
A
\end{array}\right]=[/ / / / /
$$

LU factorization is unchanged as long as A is unchanged (i.e., independent of the right-hand-side vector B)

LU Factorization

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 N} \\
a_{21} & a_{22} & \cdots & a_{2 N} \\
\vdots & \vdots & \vdots & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N N}
\end{array}\right]=\left[\begin{array}{cccc}
l_{11} & & & \\
l_{21} & l_{22} & & \\
\vdots & \vdots & \ddots & \\
l_{N 1} & l_{N 2} & \cdots & l_{N N}
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & u_{12} & \cdots & u_{1 N} \\
& 1 & \cdots & u_{2 N} \\
& & \ddots & \vdots \\
& & & 1
\end{array}\right]
$$

$$
l_{i 1} \cdot 1=a_{i 1} \quad(i=1,2, \cdots, N)
$$

LU Factorization

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 N} \\
a_{21} & a_{22} & \cdots & a_{2 N} \\
\vdots & \vdots & \vdots & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N N}
\end{array}\right]=\left[\begin{array}{cccc}
l_{11} & & & \\
l_{21} & l_{22} & & \\
\vdots & \vdots & \ddots & \\
l_{N 1} & l_{N 2} & \cdots & l_{N N}
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & u_{12} & \cdots & u_{1 N} \\
& 1 & \cdots & u_{2 N} \\
& & \ddots & \vdots \\
& & & 1
\end{array}\right]
$$

$$
l_{11} \cdot u_{1 i}=a_{1 i} \quad(i=2,3, \cdots, N)
$$

LU Factorization

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 N} \\
a_{21} & a_{22} & \cdots & a_{2 N} \\
\vdots & \vdots & \vdots & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N N}
\end{array}\right]=\left[\begin{array}{ccccc}
l_{11} & & & \\
l_{21} & l_{22} & & \\
\vdots & \vdots & \ddots & \\
l_{N 1} & l_{N 2} & \cdots & l_{N N}
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & u_{12} & \cdots & u_{1 N} \\
& 1 & \cdots & u_{2 N} \\
& & \ddots & \vdots \\
& & & 1
\end{array}\right]
$$

$$
l_{i 1} \cdot u_{12}+l_{i 2} \cdot 1=a_{i 2} \quad(i=2,3, \cdots, N)
$$

Continue iteration until all elements in L and U are solved

Memory Storage

- The matrix A can be iteratively replaced by L and U
v No additional memory is required

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 N} \\
a_{21} & a_{22} & \cdots & a_{2 N} \\
\vdots & \vdots & \vdots & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N N}
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
l_{11} & u_{12} & \cdots & u_{1 N} \\
l_{21} & l_{22} & \ddots & \vdots \\
\vdots & \vdots & \ddots & u_{N-1, N} \\
l_{N 1} & l_{N 2} & \cdots & l_{N N}
\end{array}\right]
$$

A Simple LU Example

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & 1 & -1 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
l_{11} & & \\
l_{21} & l_{22} & \\
l_{31} & l_{32} & l_{33}
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
& 1 & u_{23} \\
& & 1
\end{array}\right]} \\
l_{11} \cdot 1=a_{11} \quad l_{21} \cdot 1=a_{21} \quad l_{31} \cdot 1=a_{31} \\
{\left[\begin{array}{ccc}
2 & 1 & -1 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right]}
\end{gathered}
$$

A Simple LU Example

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 1 & -1 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
l_{11} & & \\
l_{21} & l_{22} & \\
l_{31} & l_{32} & l_{33}
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
& 1 & u_{23} \\
& & 1
\end{array}\right]} \\
& \\
& l_{11} \cdot u_{12}
\end{aligned}=a_{12} \quad l_{11} \cdot u_{13}=a_{13},
$$

$$
\left[\begin{array}{ccc}
2 & 1 / 2 & -1 / 2 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right]
$$

A Simple LU Example

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
2 & 1 / 2 & -1 / 2 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right]} \\
l_{21} \cdot u_{12}+l_{22}=a_{22} \\
l_{31} \cdot u_{12}+l_{32}=a_{32} \\
l_{21} \\
l_{31}
\end{array} l_{32} \quad l_{33}\right] \cdot\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
& 1 & u_{23} \\
& & 1
\end{array}\right] .
$$

A Simple LU Example

$$
\left[\begin{array}{ccc}
2 & 1 / 2 & -1 / 2 \\
-3 & 1 / 2 & 2 \\
-2 & 2 & 2
\end{array}\right]\left[\begin{array}{lll}
l_{11} & & \\
l_{21} & l_{22} & \\
l_{31} & l_{32} & l_{33}
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
& 1 & u_{23} \\
& & 1
\end{array}\right]
$$

$$
l_{21} \cdot u_{13}+l_{22} \cdot u_{23}=a_{23}
$$

$$
\left[\begin{array}{ccc}
2 & 1 / 2 & -1 / 2 \\
-3 & 1 / 2 & 1 \\
-2 & 2 & 2
\end{array}\right]
$$

A Simple LU Example

$$
\left[\begin{array}{ccc}
2 & 1 / 2 & -1 / 2 \\
-3 & 1 / 2 & 1 \\
-2 & 2 & 2
\end{array}\right]\left[\begin{array}{lll}
l_{11} & & \\
l_{21} & l_{22} & \\
l_{31} & l_{32} & l_{33}
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
& 1 & u_{23} \\
& & 1
\end{array}\right]
$$

$$
l_{31} \cdot u_{13}+l_{32} \cdot u_{23}+l_{33}=a_{33}
$$

$$
\left[\begin{array}{ccc}
2 & 1 / 2 & -1 / 2 \\
-3 & 1 / 2 & 1 \\
-2 & 2 & -1
\end{array}\right]
$$

LU Factorization

■ Given L and U , solve linear equation via two steps

$$
\begin{gathered}
A \cdot X=B \\
L \cdot \frac{U \cdot X}{\mathrm{~V}}=B \\
\begin{array}{l}
L \cdot V=B \\
U \cdot X=V
\end{array}
\end{gathered}
$$

LU Factorization

Forward substitution

Backward substitution
\square Only the above two steps are repeated if the right-hand-side vector B is changed
\checkmark LU factorization is not repeated

- More efficient than Gaussian elimination

Cholesky Factorization

- If the matrix A is symmetric and positive definite, Cholesky factorization is preferred over LU factorization

■ Cholesky factorization is cheaper than LU
\checkmark Only needs to find a single triangular matrix L (instead of two different matrices L and U)

Cholesky Factorization

■ A must be symmetric and positive definite to make Cholesky factorization applicable

■ A symmetric matrix A is positive definite if

$$
P^{T} \cdot A \cdot P>0 \quad \text { for any real-valued vector } P \neq 0
$$

■ Sufficient and necessary condition for a symmetric matrix A to be positive definite:
v All eigenvalues of A are positive

Partial Differential Equation Example

- 1-D rod discretized into 4 segments

$$
\begin{gathered}
\mathbf{T}_{\mathbf{1}} \mathbf{T}_{2} \mathbf{T}_{3} \mathbf{T}_{4} \quad \mathbf{T}_{5} \cdot \frac{\partial^{2} T(x, t)}{\partial x^{2}}=0 \\
T_{1}=30 \quad T_{5}=100 \\
\kappa \cdot\left(-T_{i-1}+2 T_{i}-T_{i+1}\right)=0 \quad(2 \leq i \leq 4) \\
\square \\
-30+2 T_{2}-T_{3}=0 \\
-T_{2}+2 T_{3}-T_{4}=0 \\
-T_{3}+2 T_{4}-100=0
\end{gathered}
$$

Partial Differential Equation Example

$$
\begin{aligned}
& -30+2 T_{2}-T_{3}=0 \\
& -T_{2}+2 T_{3}-T_{4}=0 \\
& -T_{3}+2 T_{4}-100=0
\end{aligned}
$$

$$
\frac{\left[\begin{array}{ccc}
2 & -1 & \\
-1 & 2 & -1 \\
& -1 & 2
\end{array}\right]}{\mathrm{A}} \cdot\left[\begin{array}{l}
T_{2} \\
T_{3} \\
T_{4}
\end{array}\right]=\left[\begin{array}{c}
30 \\
0 \\
100
\end{array}\right]
$$

Eigenvalues of A

$$
\begin{aligned}
& \lambda_{1}=3.41 \\
& \lambda_{2}=2.00 \quad \text { (A is positive definite) } \\
& \lambda_{3}=0.58
\end{aligned}
$$

Partial Differential Equation Example

- In practice, we never calculate eigenvalues to check if a matrix is positive definite or not
v Eigenvalue decomposition is much more expensive than solving a linear equation

■ If we apply finite difference to discretize steady-state heat equation, the resulting linear equation is positive definite

Partial Differential Equation Example

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & -1 & \\
-1 & 2 & -1 \\
& -1 & 2
\end{array}\right]=\left[\begin{array}{lll}
l_{11} & & \\
l_{21} & l_{22} & \\
l_{31} & l_{32} & l_{33}
\end{array}\right] \cdot\left[\begin{array}{lll}
l_{11} & l_{21} & l_{31} \\
& l_{22} & l_{32} \\
& & l_{33}
\end{array}\right]} \\
l_{11} \cdot l_{11}=a_{11} \quad l_{21} \cdot l_{11}=a_{21} \\
l_{31} \cdot l_{11}=a_{31} \\
\\
{\left[\begin{array}{ccc}
\sqrt{2} & -1 \\
-\sqrt{1 / 2} & 2 & -1 \\
0 & -1 & 2
\end{array}\right]}
\end{gathered}
$$

Partial Differential Equation Example

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\sqrt{2} & -1 & \\
-\sqrt{1 / 2} & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{lll}
l_{11} & & \\
l_{21} & l_{22} & \\
l_{31} & l_{32} & l_{33}
\end{array}\right] \cdot\left[\begin{array}{lll}
l_{11} & l_{21} & l_{31} \\
& l_{22} & l_{32} \\
& & l_{33}
\end{array}\right]} \\
l_{21} \cdot l_{21}+l_{22} \cdot l_{22}=a_{22} \quad l_{21} \cdot l_{31}+l_{22} \cdot l_{32}=a_{23}
\end{gathered}
$$

$$
\left[\begin{array}{ccc}
\sqrt{2} & -1 & \\
-\sqrt{1 / 2} & \sqrt{3 / 2} & -1 \\
0 & -\sqrt{2 / 3} & 2
\end{array}\right]
$$

Partial Differential Equation Example

$$
\left[\begin{array}{ccc}
\sqrt{2} & -1 & \\
-\sqrt{1 / 2} & \sqrt{3 / 2} & -1 \\
0 & -\sqrt{2 / 3} & 2
\end{array}\right]\left[\begin{array}{lll}
l_{11} & & \\
l_{21} & l_{22} & \\
l_{31} & l_{32} & l_{33}
\end{array}\right] \cdot\left[\begin{array}{lll}
l_{11} & l_{21} & l_{31} \\
& l_{22} & l_{32} \\
& & l_{33}
\end{array}\right]
$$

$$
l_{31} \cdot l_{31}+l_{32} \cdot l_{32}+l_{33} \cdot l_{33}=a_{33}
$$

$$
\left[\begin{array}{ccc}
\sqrt{2} & -1 & \\
-\sqrt{1 / 2} & \sqrt{3 / 2} & -1 \\
0 & -\sqrt{2 / 3} & \sqrt{4 / 3}
\end{array}\right]
$$

Summary

- Linear equation solver
\checkmark LU decomposition
v Cholesky decomposition

