
Slide 1

18-660: Numerical Methods for
Engineering Design and Optimization

Xin Li
Department of ECE

Carnegie Mellon University
Pittsburgh, PA 15213

Slide 2

Overview

 Linear Equation Solver
 Gaussian elimination
 Condition number
 Full/partial pivoting

Slide 3

Linear Equation

 Ordinary differential equation

 Partial differential equation

() () () () 00 =⋅+⋅= xtuBtxAtx

() () () ()[] () 001
1

1 =⋅⋅∆+⋅⋅∆−= +
−

+ txtuBttxAtItx nnn

Backward Euler

() () ()tzyxftzyxT
t

tzyxTCp ,,,,,,,,, 2 +∇⋅=
∂

∂
⋅⋅ κρ

Finite Difference

[]
()

[]
()

[]
()

[]
()

[]
()

[]
()2

1,,,,
2

,,1,,
2

,1,,,
2

,,,1,

2
,,1,,

2
,,,,1

,,
,,

z
TT

z
TT

y
TT

y
TT

x
TT

x
TT

f
t

T
C

kjikjikjikjikjikjikjikji

kjikjikjikji
kji

kji
p

∆

−⋅
−

∆

−⋅
+

∆

−⋅
−

∆

−⋅

+
∆

−⋅
−

∆

−⋅
+=

∂

∂
⋅⋅

−+−+

−+

κκκκ

κκ
ρ

Slide 4

Linear Equation Solver

 In theory, X is equal to A−1B

 In practice, explicitly inverting a matrix is never a good idea

 A more efficient algorithm should be applied
 E.g., use X = A\B in MATLAB

BXA =⋅

Slide 5









=








⋅








Gaussian Elimination

 Step 1: convert A to an upper triangular matrix

 Step 2: solve for X via backward substitution









=








⋅







A X B U X Y









=








⋅







U X Y 








X

Slide 6

Gaussian Elimination

 A simple example

















−
−=
















⋅
















−
−−

−

3
11
8

212
213
112

3

2

1

x
x
x

A X B

Slide 7

Gaussian Elimination

 Step 1: convert A to an upper triangular matrix

















−
−=
















⋅
















−
−−

−

3
11
8

212
213
112

3

2

1

x
x
x
















=
















⋅














 −

5
1
8

120
5.05.00
112

3

2

1

x
x
x

Slide 8

Gaussian Elimination

 Step 1: convert A to an upper triangular matrix
















=
















⋅














 −

5
1
8

120
5.05.00
112

3

2

1

x
x
x
















=
















⋅
















−

−

1
1
8

100
5.05.00
112

3

2

1

x
x
x

Slide 9
















=
















⋅
















−

−

1
1
8

100
5.05.00
112

3

2

1

x
x
x

Gaussian Elimination

 Step 2: solve for X via backward substitution

3
15.05.0

2

2

=
=−⋅

x
x

13 −=x
2

8132

1

1

=
=++⋅

x
x

Slide 10

Gaussian Elimination

 Gaussian elimination is much cheaper than calculating A−1









=








⋅







A X B









=








⋅







A 1−A I Matrix inverse: solve for A−1 where

I is an N x N identity matrix

Gaussian elimination: solve for X
where B is an N x 1 vector

The difference between Gaussian elimination and matrix inverse is
significant for large matrix

Slide 11

Numerical Noise

 In theory, Gaussian elimination works well if A is nonsingular,
i.e.,

 A is singular if and only if det(A) = 0

 However, round-off errors in our numerical computation can

bring about problems even if det(A) is not 0
 Numerical noise can change the determinant value for

Gaussian elimination

() 0det ≠=⋅ AwhereBXA

Slide 12

Numerical Noise

 A simple example

 If our machine only has 3 decimal digits of precision

() 110010001.100100det =⋅−⋅=A







−

−
=

01.100100
100100

A

() 0100100100100det =⋅−⋅=A







−

−
≈

100100
100100

A

Slide 13

Condition Number

 The "singularity" of a linear equation can be quantitatively
measured by its condition number

 The condition number of A is defined as:

 ||•|| is the norm of a matrix

BXA =⋅

() 1−⋅= AAAk

Slide 14

Condition Number

 We can get different condition number values when using
different matrix norm definitions

∑

∑∑

∑

=≤≤∞

= =

=≤≤

=

=

=

N

j
ijNi

N

i

N

j
ijF

N

i
ijNj

aA

aA

aA

11

1 1

2

111

max

max1-norm

F-norm

Inf-norm

Slide 15

Condition Number

 Condition number is highly correlated to singularity
 Use 1-norm as an example

∑
=≤≤

=
N

i
ijNj

aA
111

max1-norm









=

10
01

A









= −5100

01
A









=

00
01

A

() 111 =⋅=Ak

() 55 10101 =⋅=Ak

() ∞=∞⋅=1Ak









=−

10
011A









=−

5
1

100
01

A









∞

=−

0
011A

Slide 16

Condition Number

 For the equation AX = B, the solution error is bounded by:

 ∆A and ∆B: errors of A and B respectively
 ∆X: errors of the solution X

 Large condition number yields large solution error

 E.g., MATLAB will show a warning message if k(A) is more
than 1016~1017

() 









+⋅≤

B
ΔB

A
ΔA

Ak
X
ΔX

Slide 17

Simple Examples

BX =⋅







10
01









=

1
1

B

1
10
01

=














k









=

1
1

X









=

1.1
1

B 







=

1.1
1

X









=∆

1.0
0

B 







=∆

1.0
0

X

Slide 18

Simple Examples

BX =⋅







1999.0
11









=

1
1

B

4000
1999.0
11

=














k









=

1
0

X









=

1.1
1

B 






−
=

101
100

X









=∆

1.0
0

B 






−
=∆

100
100

X

Slide 19

Pivoting for Accuracy

 This inequality only considers numerical errors in A and B
 It assumes that no additional error is introduced when solving

the equation (e.g., during Gaussian elimination)

 Gaussian elimination adds extra numerical errors

 Every intermediate step is not perfect (due to rounding)

() 









+⋅≤

B
ΔB

A
ΔA

Ak
X
ΔX

Slide 20

Pivoting for Accuracy

 When solving AX = B, we should minimize the additional
numerical error introduced by the solver

 A general rule is to select large pivot values during Gaussian
elimination

Gaussian
 elimination









A

Pivots









A

Slide 21

Pivoting for Accuracy

 Example: solve the following problem on a machine that has 3
decimal digits of precision

 If we directly apply Gaussian elimination w/o pivoting:









=








⋅






 −
00.2
00.1

00.100.1
00.1400.1

2

1

x
xe









−

=







⋅







−

−
400.1

00.1
400.10

00.1400.1

2

1

ex
x

e
e





=
=

00.1
00.0

2

1

x
x

Wrong Answer ! 00.121 =+ xx

Slide 22

Pivoting for Accuracy

 If we apply Gaussian elimination w/ pivoting:









=








⋅






 −
00.2
00.1

00.100.1
00.1400.1

2

1

x
xe









=








⋅







− 00.1

00.2
00.1400.1
00.100.1

2

1

x
x

e

Swap two rows to select large pivot









=








⋅







00.1
00.2

00.10
00.100.1

2

1

x
x

Gaussian elimination





=
=

00.1
00.1

2

1

x
x Correct

answer !

Pivoting helps to reach the correct answer in this example

Slide 23

Pivoting for Accuracy

 Various choices of pivoting (tradeoff between accuracy and
runtime)

 Full: Swap rows and columns to get largest magnitude on the

diagonal

 Partial: Swap to put largest magnitude from pivot row (or
column) onto diagonal

Slide 24

Summary

 Linear equation solver
 Gaussian elimination
 Condition number
 Full/partial pivoting

	18-660: Numerical Methods for Engineering Design and Optimization
	Overview
	Linear Equation
	Linear Equation Solver
	Gaussian Elimination
	Gaussian Elimination
	Gaussian Elimination
	Gaussian Elimination
	Gaussian Elimination
	Gaussian Elimination
	Numerical Noise
	Numerical Noise
	Condition Number
	Condition Number
	Condition Number
	Condition Number
	Simple Examples
	Simple Examples
	Pivoting for Accuracy
	Pivoting for Accuracy
	Pivoting for Accuracy
	Pivoting for Accuracy
	Pivoting for Accuracy
	Summary

