## CarnegieMellon

## 18-660: Numerical Methods for <br> Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

## Overview

- Linear Equation Solver
v Gaussian elimination
v Condition number
, Full/partial pivoting


## Linear Equation

- Ordinary differential equation

$$
\dot{x}(t)=A \cdot x(t)+B \cdot u(t) \quad x(0)=0
$$



$$
x\left(t_{n+1}\right)=(I-\Delta t \cdot A)^{-1} \cdot\left[x\left(t_{n}\right)+\Delta t \cdot B \cdot u\left(t_{n+1}\right)\right] \quad x\left(t_{0}\right)=0
$$

■ Partial differential equation

$$
\rho \cdot C_{p} \cdot \frac{\partial T(x, y, z, t)}{\partial t}=\kappa \cdot \nabla^{2} T(x, y, z, t)+f(x, y, z, t)
$$



Finite Difference

$$
\begin{aligned}
& \rho \cdot C_{p} \cdot \frac{\partial T_{i, j, k}}{\partial t}=f_{i, j, k}+\frac{\kappa \cdot\left[T_{i+1, j, k}-T_{i, j, k}\right]}{(\Delta x)^{2}}-\frac{\kappa \cdot\left[T_{i, j, k}-T_{i-1, j, k}\right]}{(\Delta x)^{2}}+ \\
& \frac{\kappa \cdot\left[T_{i, j+1, k}-T_{i, j, k}\right]}{(\Delta y)^{2}}-\frac{\kappa \cdot\left[T_{i, j, k}-T_{i, j-1, k}\right]}{(\Delta y)^{2}}+\frac{\kappa \cdot\left[T_{i, j, k+1}-T_{i, j, k}\right]}{(\Delta z)^{2}}-\frac{\kappa \cdot\left[T_{i, j, k}-T_{i, j, k-1}\right]}{(\Delta z)^{2}}
\end{aligned}
$$

## Linear Equation Solver

$$
A \cdot X=B
$$

■ In theory, $X$ is equal to $A^{-1} B$

■ In practice, explicitly inverting a matrix is never a good idea

■ A more efficient algorithm should be applied
v E.g., use $X=$ AlB in MATLAB

## Gaussian Elimination

■ Step 1: convert A to an upper triangular matrix

$$
\left.\left[\begin{array}{l}
A \\
\hline
\end{array}\right] \cdot[X]=[B] \quad \square / / 2\right] \cdot[X]=[Y]
$$

■ Step 2: solve for $X$ via backward substitution

$$
\left[W / /\left[\begin{array}{l}
W \\
U
\end{array}\right]=[Y]\left[\begin{array}{l}
X
\end{array}\right]\right.
$$

## Gaussian Elimination

- A simple example

$$
\frac{\left[\begin{array}{ccc}
2 & 1 & -1 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right]}{\mathrm{A}} \cdot \frac{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}{\mathrm{X}}=\frac{\left[\begin{array}{c}
8 \\
-11 \\
-3
\end{array}\right]}{\mathrm{B}}
$$

## Gaussian Elimination

■ Step 1: convert A to an upper triangular matrix

$$
\left[\begin{array}{ccc}
2 & 1 & -1 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
8 \\
-11 \\
-3
\end{array}\right]
$$



$$
\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 0.5 & 0.5 \\
0 & 2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
8 \\
1 \\
5
\end{array}\right]
$$

## Gaussian Elimination

■ Step 1: convert A to an upper triangular matrix

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 0.5 & 0.5 \\
0 & 2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
8 \\
1 \\
5
\end{array}\right]} \\
\square \\
{\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 0.5 & 0.5 \\
0 & 0 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
8 \\
1 \\
1
\end{array}\right]}
\end{gathered}
$$

## Gaussian Elimination

■ Step 2: solve for X via backward substitution

$$
\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 0.5 & 0.5 \\
0 & 0 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
8 \\
1 \\
1
\end{array}\right]
$$



$$
x_{3}=-1
$$

$$
\begin{gathered}
0.5 \cdot x_{2}-0.5=1 \\
x_{2}=3
\end{gathered}
$$

$$
\begin{gathered}
2 \cdot x_{1}+3+1=8 \\
x_{1}=2
\end{gathered}
$$

## Gaussian Elimination

■ Gaussian elimination is much cheaper than calculating $\mathrm{A}^{-1}$

$$
\begin{aligned}
& {\left[\begin{array}{l}
A
\end{array}\right] \cdot[X]=[B]} \\
& {\left[\begin{array}{l}
A \\
\end{array}\right] \cdot\left[A^{-1}\right]=\left[\begin{array}{l}
I \\
\end{array}\right]} \\
& \text { Gaussian elimination: solve for } X \\
& \text { where } B \text { is an } \mathrm{N} x 1 \text { vector } \\
& \text { Matrix inverse: solve for } \mathrm{A}^{-1} \text { where } \\
& \mathrm{I} \text { is an } \mathrm{N} \times \mathrm{N} \text { identity matrix }
\end{aligned}
$$

The difference between Gaussian elimination and matrix inverse is significant for large matrix

## Numerical Noise

■ In theory, Gaussian elimination works well if A is nonsingular, i.e.,

$$
A \cdot X=B \text { where } \operatorname{det}(A) \neq 0
$$

$\checkmark \mathrm{A}$ is singular if and only if $\operatorname{det}(\mathrm{A})=0$

- However, round-off errors in our numerical computation can bring about problems even if $\operatorname{det}(A)$ is not 0
$\checkmark$ Numerical noise can change the determinant value for Gaussian elimination


## Numerical Noise

- A simple example

$$
A=\left[\begin{array}{cc}
100 & -100 \\
-100 & 100.01
\end{array}\right] \quad \operatorname{det}(A)=100 \cdot 100.01-100 \cdot 100=1
$$

V If our machine only has 3 decimal digits of precision

$$
A \approx\left[\begin{array}{cc}
100 & -100 \\
-100 & 100
\end{array}\right] \quad \operatorname{det}(A)=100 \cdot 100-100 \cdot 100=0
$$

## Condition Number

- The "singularity" of a linear equation can be quantitatively measured by its condition number

$$
A \cdot X=B
$$

■ The condition number of $A$ is defined as:

$$
k(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

$\checkmark\|\bullet\|$ is the norm of a matrix

## Condition Number

■ We can get different condition number values when using different matrix norm definitions

$$
\begin{aligned}
& \text { 1-norm } \quad\|A\|_{1}=\max _{1 \leq j \leq N} \sum_{i=1}^{N}\left|a_{i j}\right| \\
& \text { F-norm } \quad\|A\|_{F}=\sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N}\left|a_{i j}\right|^{2}} \\
& \text { Inf-norm } \quad\|A\|_{\infty}=\max _{1 \leq i \leq N} \sum_{j=1}^{N}\left|a_{i j}\right|
\end{aligned}
$$

## Condition Number

■ Condition number is highly correlated to singularity
v Use 1-norm as an example

$$
\begin{aligned}
& \text { 1-norm } \quad\|A\|_{1}=\max _{1 \leq j \leq N} \sum_{i=1}^{N}\left|a_{i j}\right| \\
& A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \triangleleft \quad A^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \triangleleft \quad k(A)=1 \cdot 1=1 \\
& A=\left[\begin{array}{cc}
1 & 0 \\
0 & 10^{-5}
\end{array}\right] \quad \zeta \quad A^{-1}=\left[\begin{array}{cc}
1 & 0 \\
0 & 10^{5}
\end{array}\right] \quad \zeta \quad k(A)=1 \cdot 10^{5}=10^{5} \\
& A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
& \leftrightarrows \quad A^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & \infty
\end{array}\right] \\
& \square k(A)=1 \cdot \infty=\infty
\end{aligned}
$$

## Condition Number

■ For the equation $\mathrm{AX}=\mathrm{B}$, the solution error is bounded by:

$$
\frac{\|\Delta X\|}{\|X\|} \leq k(A) \cdot\left(\frac{\|\Delta A\|}{\|A\|}+\frac{\|\Delta B\|}{\|B\|}\right)
$$

v $\Delta \mathrm{A}$ and $\Delta \mathrm{B}$ : errors of A and B respectively
v $\Delta X$ : errors of the solution $X$

■ Large condition number yields large solution error
$\checkmark$ E.g., MATLAB will show a warning message if $k(A)$ is more than $10^{16} \sim 10^{17}$

Simple Examples

$$
\begin{array}{lll}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cdot X=B} & k\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=1 \\
B=\left[\begin{array}{l}
1 \\
1
\end{array}\right] & & X=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\uparrow & \uparrow & \\
\Delta B=\left[\begin{array}{c}
0 \\
0.1
\end{array}\right] & \Delta X=\left[\begin{array}{c}
0 \\
0.1
\end{array}\right] \\
B=\left[\begin{array}{c}
1 \\
1.1
\end{array}\right] & \square & X=\left[\begin{array}{c}
1 \\
1.1
\end{array}\right]
\end{array}
$$

Simple Examples

$$
\begin{array}{ll}
{\left[\begin{array}{cc}
1 & 1 \\
0.999 & 1
\end{array}\right] \cdot X=B} & k\left(\left[\begin{array}{cc}
1 & 1 \\
0.999 & 1
\end{array}\right]\right)=4000 \\
B=\left[\begin{array}{l}
1 \\
1
\end{array}\right] & X=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\uparrow & \uparrow=\left[\begin{array}{c}
0 \\
0.1
\end{array}\right]
\end{array} \quad \Delta X=\left[\begin{array}{c}
-100 \\
100
\end{array}\right]
$$

## Pivoting for Accuracy

$$
\frac{\|\Delta X\|}{\|X\|} \leq k(A) \cdot\left(\frac{\|\Delta A\|}{\|A\|}+\frac{\|\Delta B\|}{\|B\|}\right)
$$

■ This inequality only considers numerical errors in A and B
$\checkmark$ It assumes that no additional error is introduced when solving the equation (e.g., during Gaussian elimination)

■ Gaussian elimination adds extra numerical errors
v Every intermediate step is not perfect (due to rounding)

## Pivoting for Accuracy

- When solving $\mathrm{AX}=\mathrm{B}$, we should minimize the additional numerical error introduced by the solver

■ A general rule is to select large pivot values during Gaussian elimination


## Pivoting for Accuracy

■ Example: solve the following problem on a machine that has 3 decimal digits of precision

$$
\left[\begin{array}{cc}
1.00 e-4 & 1.00 \\
1.00 & 1.00
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1.00 \\
2.00
\end{array}\right]
$$

■ If we directly apply Gaussian elimination wlo pivoting:

$$
\left[\begin{array}{cc}
1.00 e-4 & 1.00 \\
0 & -1.00 e 4
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1.00 \\
-1.00 e 4
\end{array}\right] \quad\left\{\begin{array}{l}
x_{1}=0.00 \\
x_{2}=1.00
\end{array}\right.
$$

Wrong Answer ! $\quad x_{1}+x_{2}=1.00$

## Pivoting for Accuracy

■ If we apply Gaussian elimination wl pivoting:
$\left[\begin{array}{cc}1.00 e-4 & 1.00 \\ 1.00 & 1.00\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1.00 \\ 2.00\end{array}\right]$
$\square$ Swap two rows to select large pivot
$\left[\begin{array}{cc}1.00 & 1.00 \\ 1.00 e-4 & 1.00\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}2.00 \\ 1.00\end{array}\right]$


Gaussian elimination
$\left[\begin{array}{cc}1.00 & 1.00 \\ 0 & 1.00\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}2.00 \\ 1.00\end{array}\right] \quad \square \quad \begin{cases}x_{1}=1.00 & \text { Correct } \\ x_{2}=1.00 & \text { answer! }\end{cases}$

Pivoting helps to reach the correct answer in this example

## Pivoting for Accuracy

- Various choices of pivoting (tradeoff between accuracy and runtime)
- Full: Swap rows and columns to get largest magnitude on the diagonal
v Partial: Swap to put largest magnitude from pivot row (or column) onto diagonal


## Summary

■ Linear equation solver
v Gaussian elimination
v Condition number
, Full/partial pivoting

