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Overview 

 Linear Equation Solver 
 Gaussian elimination 
 Condition number 
 Full/partial pivoting 
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Linear Equation 

 Ordinary differential equation 
 
 
 
 

 Partial differential equation 

( ) ( ) ( ) ( ) 00 =⋅+⋅= xtuBtxAtx

( ) ( ) ( ) ( )[ ] ( ) 001
1

1 =⋅⋅∆+⋅⋅∆−= +
−

+ txtuBttxAtItx nnn

Backward Euler 

( ) ( ) ( )tzyxftzyxT
t

tzyxTCp ,,,,,,,,, 2 +∇⋅=
∂

∂
⋅⋅ κρ

Finite Difference 

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )2

1,,,,
2

,,1,,
2

,1,,,
2

,,,1,

2
,,1,,

2
,,,,1

,,
,,

z
TT

z
TT

y
TT

y
TT

x
TT

x
TT

f
t

T
C

kjikjikjikjikjikjikjikji

kjikjikjikji
kji

kji
p

∆

−⋅
−

∆

−⋅
+

∆

−⋅
−

∆

−⋅

+
∆

−⋅
−

∆

−⋅
+=

∂

∂
⋅⋅

−+−+

−+

κκκκ

κκ
ρ



Slide 4   

Linear Equation Solver 

 
 

 In theory, X is equal to A−1B 
 

 In practice, explicitly inverting a matrix is never a good idea 
 

 A more efficient algorithm should be applied 
 E.g., use X = A\B in MATLAB 

 

BXA =⋅
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Gaussian Elimination 

 Step 1: convert A to an upper triangular matrix 
 
 
 
 

 Step 2: solve for X via backward substitution 
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Gaussian Elimination 

 A simple example 
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Gaussian Elimination 

 Step 1: convert A to an upper triangular matrix 
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Gaussian Elimination 

 Step 1: convert A to an upper triangular matrix 
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Gaussian Elimination 

 Step 2: solve for X via backward substitution 
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Gaussian Elimination 

 Gaussian elimination is much cheaper than calculating A−1 
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I is an N x N identity matrix 

Gaussian elimination: solve for X 
where B is an N x 1 vector 

The difference between Gaussian elimination and matrix inverse is 
significant for large matrix 
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Numerical Noise 

 In theory, Gaussian elimination works well if A is nonsingular, 
i.e., 

 
 

 A is singular if and only if det(A) = 0  

 
 However, round-off errors in our numerical computation can 

bring about problems even if det(A) is not 0 
 Numerical noise can change the determinant value for 

Gaussian elimination 

( ) 0det ≠=⋅ AwhereBXA
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Numerical Noise 

 A simple example 
 
 
 
 

 If our machine only has 3 decimal digits of precision 
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Condition Number 

 The "singularity" of a linear equation can be quantitatively 
measured by its condition number 
 
 

 The condition number of A is defined as: 
 
 
 

 ||•|| is the norm of a matrix 

BXA =⋅

( ) 1−⋅= AAAk
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Condition Number 

 We can get different condition number values when using 
different matrix norm definitions 
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Condition Number 

 Condition number is highly correlated to singularity 
 Use 1-norm as an example 
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Condition Number 

 For the equation AX = B, the solution error is bounded by: 
 
 
 

 ∆A and ∆B: errors of A and B respectively 
 ∆X: errors of the solution X 

 
 Large condition number yields large solution error 

 E.g., MATLAB will show a warning message if k(A) is more 
than 1016~1017 
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Simple Examples 
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Simple Examples 
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Pivoting for Accuracy 

 
 
 
 

 This inequality only considers numerical errors in A and B 
 It assumes that no additional error is introduced when solving 

the equation (e.g., during Gaussian elimination) 

 
 Gaussian elimination adds extra numerical errors 

 Every intermediate step is not perfect (due to rounding) 
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Pivoting for Accuracy 

 When solving AX = B, we should minimize the additional 
numerical error introduced by the solver 
 

 A general rule is to select large pivot values during Gaussian 
elimination 
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Pivoting for Accuracy 

 Example: solve the following problem on a machine that has 3 
decimal digits of precision 
 
 
 

 If we directly apply Gaussian elimination w/o pivoting: 
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Pivoting for Accuracy 

 If we apply Gaussian elimination w/ pivoting: 
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Pivoting helps to reach the correct answer in this example 
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Pivoting for Accuracy 

 Various choices of pivoting (tradeoff between accuracy and 
runtime) 

 
 Full: Swap rows and columns to get largest magnitude on the 

diagonal 
 

 Partial: Swap to put largest magnitude from pivot row (or 
column) onto diagonal 
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Summary 

 Linear equation solver 
 Gaussian elimination 
 Condition number 
 Full/partial pivoting 
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