CarnegieMellon

18-660: Numerical Methods for
 Engineering Design and Optimization

Xin Li

Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

■ Thermal Analysis
v 2-D / 3-D heat equation
v Finite difference

1-D Heat Equation

■ The complete PDE with boundary and initial conditions

PDE

$$
\rho \cdot C_{p} \cdot T_{t}(x, t)=\kappa \cdot T_{x x}(x, t)+f(x, t) \quad(0 \leq x \leq L \quad 0 \leq t \leq \infty)
$$

BCs $\left\{\begin{array}{l}T(x=0, t)=T_{1} \\ T(x=L, t)=T_{2}\end{array} \quad(0<t \leq \infty)\right.$

IC $\quad T(x, t=0)=T_{0} \quad(0 \leq x \leq L)$

2-D / 3-D Heat Equation

■ 2-D heat equation

$$
\rho \cdot C_{p} \cdot \frac{\partial T(x, y, t)}{\partial t}=\kappa \cdot \nabla^{2} T(x, y, t)+f(x, y, t)
$$

- 3-D heat equation

Density Laplace operator

$$
\underset{\uparrow}{\downarrow} \cdot \frac{\partial T(x, y, z, t)}{\partial t}=\underset{\kappa}{\kappa} \cdot \stackrel{\nabla^{2} T(x, y, z, t)}{\downarrow}+\underset{\uparrow}{f(x, y, z, t)}
$$

Thermal capacity Thermal conductivity Heat source

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

2-D / 3-D Heat Equation

■ Heat equation is a 2nd-order linear PDE

$$
\rho \cdot C_{p} \cdot \frac{\partial T(x, y, z, t)}{\partial t}=\kappa \cdot \nabla^{2} T(x, y, z, t)+f(x, y, z, t)
$$

■ Order of PDE - the order of the highest partial derivative
$■$ Linearity - the dependent variable T and all its derivatives appear in a linear fashion

■ Homogeneity
∇ Homogenous if $f(x, y, z, t)=0$
v Non-homogenous if $f(x, y, z, t) \neq 0$

Finite Difference Method

■ PDE can be numerically solved using finite difference method
v Discretize 3-D space into a number of small control volumes

$$
\rho \cdot C_{p} \cdot \frac{\partial T(x, y, z, t)}{\partial t}=\kappa \cdot \nabla^{2} T(x, y, z, t)+f(x, y, z, t)
$$

Finite Difference Method

- A control volume

■ Write PDE for each control volume

$$
\rho \cdot C_{p} \cdot \frac{\partial T(i, j, k, t)}{\partial t}=\kappa\left[\frac{\partial^{2} T(i, j, k, t)}{\partial x^{2}}+\frac{\partial^{2} T(i, j, k, t)}{\partial y^{2}}+\frac{\partial^{2} T(i, j, k, t)}{\partial z^{2}}\right]+f(i, j, k, t)
$$

Finite Difference Method

■ Discretize PDE over the control volume

$$
\begin{gathered}
\frac{\partial^{2} T(i, j, k, t)}{\partial x^{2}} \\
\frac{\square}{\frac{\frac{\partial T(i+1, j, k, t)}{\partial x}-\frac{\partial T(i, j, k, t)}{\partial x}}{\Delta x}} \\
\frac{\square}{[T(i+1, j, k, t)-T(i, j, k, t)]}-\frac{[T(i, j, k, t)-T(i-1, j, k, t)]}{\Delta x} \\
\frac{\Delta x}{\Delta x} \\
\frac{\square}{(\Delta x)^{2}}-\frac{T_{i+1, j, k}-T_{i, j, k}-T_{i-1, j, k}}{(\Delta x)^{2}}
\end{gathered}
$$

Finite Difference Method

■ Rewrite the finite difference discretization
$\rho \cdot C_{p} \cdot \frac{\partial T(i, j, k, t)}{\partial t}=\kappa \cdot\left[\frac{\partial^{2} T(i, j, k, t)}{\partial x^{2}}+\frac{\partial^{2} T(i, j, k, t)}{\partial y^{2}}+\frac{\partial^{2} T(i, j, k, t)}{\partial z^{2}}\right]+f(i, j, k, t)$

$$
\begin{aligned}
& \rho \cdot C_{p} \cdot \frac{\partial T_{i, j, k}}{\partial t}=f_{i, j, k}+\frac{\kappa \cdot\left[T_{i+1, j, k}-T_{i, j, k}\right]}{(\Delta x)^{2}}-\frac{\kappa \cdot\left\lfloor T_{i, j, k}-T_{i-1, j, k}\right]}{(\Delta x)^{2}}+ \\
& \frac{\kappa \cdot\left[T_{i, j+1, k}-T_{i, j, k}\right]}{(\Delta y)^{2}}-\frac{\kappa \cdot\left[T_{i, j, k}-T_{i, j-1, k}\right]}{(\Delta y)^{2}}+\frac{\kappa \cdot\left[T_{i, j, k+1}-T_{i, j, k}\right]}{(\Delta z)^{2}}-\frac{\kappa \cdot\left[T_{i, j, k}-T_{i, j, k-1}\right]}{(\Delta z)^{2}}
\end{aligned}
$$

Finite Difference Method

\[

\]

Finite Difference Method

■ We have:

$$
\begin{aligned}
& I_{i, j, k}=C \cdot \frac{\partial T_{i, j, k}}{\partial t}+G_{x} \cdot\left[T_{i, j, k}-T_{i+1, j, k}\right]+G_{x} \cdot\left[T_{i, j, k}-T_{i-1, j, k}\right] \\
& G_{y} \cdot\left[T_{i, j, k}-T_{i, j+1, k}\right]+G_{y} \cdot\left[T_{i, j, k}-T_{i, j-1, k}\right]+G_{z} \cdot\left[T_{i, j, k}-T_{i, j, k+1}\right]+G_{z} \cdot\left[T_{i, j, k}-T_{i, j, k-1}\right]
\end{aligned}
$$

v where

$$
\begin{aligned}
G_{x} & =\frac{\kappa \cdot \Delta y \cdot \Delta z}{\Delta x} \quad G_{y}=\frac{\kappa \cdot \Delta x \cdot \Delta z}{\Delta y} \quad G_{z}=\frac{\kappa \cdot \Delta x \cdot \Delta y}{\Delta z} \\
C & =\rho \cdot C_{p} \cdot \Delta x \cdot \Delta y \cdot \Delta z \quad I_{i, j, k}=f_{i, j, k} \cdot \Delta x \cdot \Delta y \cdot \Delta z
\end{aligned}
$$

The discretized thermal equation has a form similar to a circuit equation

Finite Difference Method

Equivalent circuit consisting of thermal resistors/capacitors and heat sources

$T==$ nodal voltage
$I==$ branch current
(i-1,j,k)

$$
(i, j, k-1)
$$

$$
\begin{aligned}
& I_{i, j, k}=C \cdot \frac{\partial T_{i, k, k}}{\partial t}+G_{x}\left[T_{i, j, k}-T_{i t, j, k}\right]+G_{x} \cdot\left[T_{i, k, k}-T_{i, t, k, k}\right] \\
& G_{y} \cdot\left[T_{i, j, k}-T_{i, j, k, k}\right]+G_{y} \cdot\left[T_{i, j, k}-T_{i, j, k}\right]+G_{z} \cdot\left[T_{i, k, k}-T_{i, j, k+1}\right]+G_{z} \cdot\left[T_{i, j, k}-T_{i, j, k-1}\right]
\end{aligned}
$$

Finite Difference Method

$$
\begin{aligned}
& I_{i, j, k}=C \cdot \frac{\partial T_{i, j, k}}{\partial t}+G_{x} \cdot\left[T_{i, j, k}-T_{i+1, j, k}\right]+G_{x} \cdot\left[T_{i, j, k}-T_{i-1, j, k}\right] \\
& G_{y} \cdot\left[T_{i, j, k}-T_{i, j+1, k}\right]+G_{y} \cdot\left[T_{i, j, k}-T_{i, j-1, k}\right]+G_{z} \cdot\left[T_{i, j, k}-T_{i, j, k+1}\right]+G_{z} \cdot\left[T_{i, j, k}-T_{i, j, k-k}\right]
\end{aligned}
$$

- The operator $\partial \partial \mathrm{\partial t}$ can be handled by numerical integration
\checkmark We need to solve a large-scale linear equation to find $T_{i, j, k}\left(t_{n}\right)$ at each time point t_{n}

■ Generally interested only in steady state - thermal capacitance is not considered

1-D Thermal Analysis Example

- 1-D PDE to describe the steady-state temperature distribution along a uniform rod at $[0,1]$

$$
\begin{gathered}
T(x, 0)=T_{\text {Init }} \\
T(x=0, t)=T(x=1, t)=0
\end{gathered}
$$

$\rho \cdot C_{p} \cdot \frac{\partial T(x, t)}{\partial t}=\kappa \cdot \frac{\partial T^{2}(x, t)}{\partial x^{2}}+f(x, t)$
Steady state $\quad \frac{\partial T(x, t)}{\partial t}=0$

$$
-\kappa \cdot T_{x x}(x)=f(x) \quad(0<x<1)
$$

1-D Thermal Analysis Example

- Approximate 2nd order derivative using finite difference

$$
\begin{gathered}
T(x=0, t)=T(x=1, t)=0 \quad-\kappa \cdot T_{x x}(x)=f(x) \quad T_{x x}\left(x_{j}\right)=\frac{T_{j+1}+T_{j-1}-2 T_{j}}{h^{2}} \\
\kappa \cdot\left(-T_{j-1}+2 T_{j}-T_{j+1}\right)=h^{2} \cdot f_{j} \quad(1 \leq j \leq N-1) \\
T_{0}=T_{N}=0
\end{gathered}
$$

1-D Thermal Analysis Example

- The linear system is:

$$
\begin{gathered}
\kappa \cdot\left(-T_{j-1}+2 T_{j}-T_{j+1}\right)=h^{2} \cdot f_{j} \quad(1 \leq j \leq N-1) \\
T_{0}=T_{N}=0
\end{gathered}
$$

$$
\begin{gathered}
\kappa \cdot\left(-0+2 T_{1}-T_{2}\right)=h^{2} \cdot f_{1} \\
\kappa \cdot\left(-T_{1}+2 T_{2}-T_{3}\right)=h^{2} \cdot f_{2} \\
\vdots \\
\kappa \cdot\left(-T_{N-2}+2 T_{N-1}-0\right)=h^{2} \cdot f_{N-1}
\end{gathered}
$$

Solve linear equation to determine $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{N}-1}$

2-D Thermal Analysis Example

- 2-D PDE to describe the steady-state temperature distribution over a uniform plane $x, y \in[0,1]$

$$
\begin{gathered}
T(x, y, 0)=T_{\text {Init }} \\
T(x=0, t)=T(x=1, t)=0 \\
T(y=0, t)=T(y=1, t)=0 \\
\rho \cdot C_{p} \cdot \frac{\partial T}{\partial t}=\kappa \cdot\left(\frac{\partial T^{2}}{\partial x^{2}}+\frac{\partial T^{2}}{\partial y^{2}}\right)+f(x, y, t) \\
\text { Steady state } \\
-\kappa \cdot\left(T_{x x}+T_{y y}\right)=f(x, y)(0<x, y<1)
\end{gathered}
$$

2-D Thermal Analysis Example

- Approximate 2nd order derivative using finite difference

$$
\begin{gathered}
T(x=0, t)=T(x=1, t)=0 \\
T(y=0, t)=T(y=1, t)=0 \\
-\kappa \cdot\left(T_{x x}+T_{y y}\right)=f(x, y) \\
T_{i, j}=T\left(x_{i}, y_{j}\right) \\
f_{i, j}=f\left(x_{i}, y_{j}\right) \\
T_{x x}\left(x_{i}, y_{j}\right)=\frac{T_{i+1, j}+T_{i-1, j}-2 T_{i, j}}{h^{2}} \\
T_{y y}\left(x_{i}, y_{j}\right)=\frac{T_{i, j+1}+T_{i, j-1}-2 T_{i, j}}{h^{2}}
\end{gathered}
$$

2-D Thermal Analysis Example

- The linear system is:

$$
\begin{array}{cc}
T(x=0, t)=T(x=1, t)=0 & T_{x x}\left(x_{i}, y_{j}\right)=\frac{T_{i+1, j}+T_{i-1, j}-2 T_{i, j}}{h^{2}} \\
T(y=0, t)=T(y=1, t)=0 & T_{y y}\left(x_{i}, y_{j}\right)=\frac{T_{i, j+1}+T_{i, j-1}-2 T_{i, j}}{h^{2}} \\
-\kappa \cdot\left(T_{x x}+T_{y y}\right)=f(x, y) &
\end{array}
$$

$\kappa \cdot\left(-T_{i-1, j}+2 T_{i, j}-T_{i+1, j}-T_{i, j-1}+2 T_{i, j}-T_{i, j+1}\right)=h^{2} \cdot f_{i, j} \quad T_{i, j}$ NOT at boundary

$$
T_{i, j}=0 \quad \mathrm{~T}_{\mathrm{i}, \mathrm{j}} \text { at boundary }
$$

Solve linear equation to determine all temperature values

Thermal Analysis

■ Thermal analysis generally requires to solve a large-scale linear equation

$$
A \cdot X=B
$$

■ The matrix A is symmetric and diagonally dominant

$$
A_{i j}=A_{j i} \quad \text { For all matrix elements }
$$

$$
\left|A_{i i}\right| \geq \sum_{j=1, j \neq i}^{N}\left|A_{i j}\right| \quad \text { For all diagonal elements }
$$

Thermal Analysis

■ 1-D thermal analysis example

$$
\begin{aligned}
& \kappa \cdot\left(-T_{j-1}+2 T_{j}-T_{j+1}\right)=h^{2} \cdot f_{j} \quad(1 \leq j \leq N-1) \\
& T_{0}=T_{N}=0 \\
& {\left[\begin{array}{cccccc}
2 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & \ddots & \ddots & -1 \\
& & & & -1 & 2
\end{array}\right] \cdot\left[\begin{array}{c}
T_{1} \\
T_{2} \\
\vdots \\
\vdots \\
\vdots \\
T_{N-1}
\end{array}\right]=\frac{h^{2}}{\kappa} \cdot\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
\vdots \\
\vdots \\
f_{N-1}
\end{array}\right]} \\
& \text { Symmetric and } \\
& \text { diagonally dominant }
\end{aligned}
$$

Thermal Analysis

- A matrix " A " is positive definite, if
$\checkmark \mathrm{A}$ is symmetric and
- A is diagonally dominant and
- All diagonal elements of A are non-negative and
\checkmark A is not singular
, Sufficient but NOT necessary condition
- Definition of positive definite matrix

$$
P^{T} \cdot A \cdot P>0 \quad \text { for any real-valued vector } P \neq 0
$$

All eigenvalues of A are positive

Thermal Analysis

- Positive definite linear equation $A X=B$ can be solved by efficient numerical algorithms
- Cholesky decomposition
- Conjugate gradient method
v Etc.

■ We will try to cover some of these efficient algorithms in future lectures

Summary

- Thermal analysis
v 2-D / 3-D heat equation
- Finite difference

