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Overview 

 Thermal Analysis 
 2-D / 3-D heat equation 
 Finite difference 
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1-D Heat Equation 

 The complete PDE with boundary and initial conditions 
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2-D / 3-D Heat Equation 

 2-D heat equation 
 
 
 

 3-D heat equation 
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2-D / 3-D Heat Equation 

 Heat equation is a 2nd-order linear PDE 
 
 
 

 Order of PDE – the order of the highest partial derivative 
 

 Linearity – the dependent variable T and all its derivatives 
appear in a linear fashion 
 

 Homogeneity 
 Homogenous if f(x,y,z,t) = 0 
 Non-homogenous if f(x,y,z,t) ≠ 0 
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Finite Difference Method 

 PDE can be numerically solved using finite difference method 
 Discretize 3-D space into a number of small control volumes 

A control 
volume 
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Finite Difference Method 

 A control volume 
 
 
 
 

 Write PDE for each control volume 
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Finite Difference Method 

 Discretize PDE over the control volume 
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Finite Difference Method 

 Rewrite the finite difference discretization 
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 Finite Difference Method 
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 Finite Difference Method 

 We have: 
 
 
 
 where 
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The discretized thermal equation has a form similar to 
a circuit equation 
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 Finite Difference Method 

(i, j, k) 
(i+1, j, k) 

(i, j, k-1) 

(i, j, k+1) 

(i-1, j, k) 

(i, j+1, k) 

(i, j-1, k) 

Gz 
Gx Gx 

Gy 

Gy 
Gz 

C 
Ii, j, k 

Equivalent circuit consisting of thermal 
resistors/capacitors and heat sources 

T == nodal voltage 

I == branch current 
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 Finite Difference Method 

 
 
 
 

 The operator ∂/∂t can be handled by numerical integration 
 We need to solve a large-scale linear equation to find Ti,j,k(tn) at 

each time point tn 

 
 Generally interested only in steady state – thermal capacitance 

is not considered 
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1-D Thermal Analysis Example 
 1-D PDE to describe the steady-state temperature distribution 

along a uniform rod at [0, 1] 
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1-D Thermal Analysis Example 

 Approximate 2nd order derivative using finite difference 

Step size h 
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1-D Thermal Analysis Example 

 The linear system is: 
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Solve linear equation to determine T1, T2, ..., TN-1 
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 2-D Thermal Analysis Example 

 2-D PDE to describe the steady-state temperature distribution 
over a uniform plane x, y ∈ [0, 1] 
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 2-D Thermal Analysis Example 

 Approximate 2nd order derivative using finite difference 
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 2-D Thermal Analysis Example 

 The linear system is: 
 

( ) ( )
( ) ( )

( ) ( )yxfTT
tyTtyT
txTtxT

yyxx ,
0,1,0
0,1,0

=+⋅−
====
====

κ

( )

( ) 2
,1,1,

2
,,1,1

2
,

2
,

h
TTT

yxT

h
TTT

yxT

jijiji
jiyy

jijiji
jixx

−+
=

−+
=

−+

−+

Solve linear equation to determine all temperature values 

( ) jijijijijijiji fhTTTTTT ,
2

1,,1,,1,,1 22 ⋅=−+−−+−⋅ +−+−κ

0, =jiT

Ti,j NOT at boundary 

Ti,j at boundary 



Slide 20   

 Thermal Analysis 

 Thermal analysis generally requires to solve a large-scale 
linear equation 
 
 

 The matrix A is symmetric and diagonally dominant 
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 Thermal Analysis 

 1-D thermal analysis example 
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 Thermal Analysis 

 A matrix “A” is positive definite, if 
 A is symmetric and 
 A is diagonally dominant and 
 All diagonal elements of A are non-negative and 
 A is not singular 
 Sufficient but NOT necessary condition 

 
 Definition of positive definite matrix 

0>⋅⋅ PAPT for any real-valued vector P ≠ 0 

All eigenvalues of A are positive 
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 Thermal Analysis 

 Positive definite linear equation AX = B can be solved by 
efficient numerical algorithms 
 Cholesky decomposition 
 Conjugate gradient method 
 Etc. 

 
 We will try to cover some of these efficient algorithms in 

future lectures 
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Summary 

 Thermal analysis 
 2-D / 3-D heat equation 
 Finite difference 
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